I. Introduction

Increasing income and wealth inequality has led to renewed interest in understanding and explaining wealth and income distributions, and in particular, the recent growth in their top shares (Piketty 2014). The literature has largely emphasized the role of earnings inequality in explaining wealth inequality. Indeed, Aiyagari-Bewley economies, which focus on precautionary savings as an optimal response to stochastic earnings, represent the most popular approach of introducing heterogeneity into a representative consumer framework to study the distribution of wealth (see Benhabib and Bisin forthcoming for a survey).

However, models of earnings inequality and precautionary savings find it generally difficult to reproduce the thick right tail of the wealth distribution observed in the data. In particular, these models cannot reproduce wealth distributions with substantially thicker right tails (larger top shares) than earnings distributions. But, while comparable estimates of the statistical properties of wealth and earnings distributions are available only for a few countries, they invariably show that thicker wealth tails are a critical and robust feature of data. Consider to-date estimates of the tail index, a measure of the rate of decay of the right tail of a distribution, and hence a measure which is inversely related to its thickness. Wealth and earnings indices are, respectively, 1.48–1.55 and 2 in the United States; 1.63–1.85 and 3 in Sweden; and 1.33–1.54 and 2 in Canada.2

More specifically, in the context of Aiyagari-Bewley models, simulations tend to produce tail indices of wealth close to those of the distribution of labor earnings which has been fed into the model. This is explicitly noted, for instance, by Carroll, Slacalek, and Tokuoka (2014). Similar results are obtained by De Nardi, Fella, and Pardo (2016), which argues that adopting the exceptional recently available earnings data from Guvenen et al. (2015) allows for a much better fit of the wealth distribution relative to the bottom 60 percent of agents, but generates too little wealth concentration at the top of the wealth distribution; and most recently by Hubmer, Krusell, and Smith (2016, p. 11), which aptly concludes:

the wealth distribution inherits not only the Pareto tail of the earnings distribution but also its Pareto coefficient. Because earnings are considerably less concentrated than wealth, the resulting tail in wealth is too thin to match the data […].

Most importantly, in economic environments in which wealth accumulation is mainly driven by stochastic earnings, it is natural to expect a positive relationship between earnings and wealth inequality: higher earning risk tends to increase wealth accumulation via precautionary

1 In the standard and simplest case of a Pareto distribution, whose cumulative is \(F(x) = 1 - \left(\frac{x}{x_m} \right)^\alpha \) for \(x \in [x_m, \infty) \) and \(x_m, \alpha > 0 \), the tail index coincides with the exponent \(\alpha \).

savings, thereby spreading the distribution, which in turn, under borrowing constraints, tends to increase wealth inequality (Aiyagari 1994). Interestingly, on the other hand, the cross-country data does not display a statistically significant correlation between inequality in earnings and wealth, indicating a significant role for other factors to drive the distribution of wealth. Consider Gini coefficients, the standard inequality measure (which can also be considered a proxy for the inverse of tail indices), reported in Figure 1.

Indeed, the slope coefficient from a linear regression of wealth Gini on earnings Gini is 0.258, not statistically significant with a standard error of 0.296. Though only suggestive due to the paucity of data, we consider this as additional evidence that earnings inequality does not adequately explain wealth inequality.

II. A Theoretical Explanation

A simple but deep theoretical result is useful to understand why it is difficult to reproduce important statistical properties of the wealth distribution which are observed in the data with earnings inequality and precautionary savings alone.

Consider a linear individual wealth accumulation equation,

\[w_{t+1} = r_t w_t + y_t - c_t, \]

where \(w_t, y_t, c_t \) and \(r_t \) are wealth, earnings, consumption, and rate of return at time \(t \). We may assume \(\{y_t, r_t\} \) are stationary stochastic processes.

Consider also a linear consumption function,

\[c_t = \psi w_t + \chi_t. \]

We can then write the wealth accumulation equation as

\[w_{t+1} = (r_t - \psi) w_t + (y_t - \chi_t). \]

Suppose that \(r_t \) and \(y_t > \chi_t \) are both random variables, independent and i.i.d. over time and independent of \(w_t \). Suppose also that \(\chi_t \geq 0 \), \(0 < E(r_t - \psi) < 1 \), and \(Pr(r_t - \psi > 1) > 0 \) for any \(t \geq 0 \).

The stationary distribution for \(w_t \) can be characterized by applying a theorem due to Grey (1994), extending results of Kesten (1973), to (2).

THEOREM 1: Suppose \(y_t - \chi_t \) has a thick right tail, with tail index \(\beta > 0 \). If \(E((r_t - \psi)^\gamma) < 1 \), and \(E((r_t - \psi)^\gamma) < \infty \) for some \(\gamma > \beta > 0 \), then the right-tail index of the stationary distribution of wealth will be \(\beta \). If instead \(E((r_t - \psi)^\gamma) = 1 \) for \(\gamma < \beta \), then the right-tail index of the stationary distribution of wealth will be \(\gamma \).

The Theorem makes clear that the right-tail index of the wealth distribution induced by the accumulation equation, (2), is either \(\gamma \), which depends on the stochastic properties of returns, or \(\beta \), the right tail of \(y_t - \chi_t \). With \(\chi_t \geq 0 \) the right tail of \(y_t - \chi_t \) will be no thicker than that of \(y_t \). In other words, it is either stochastic returns via the accumulation process or skewed earnings which determine the thickness of the right tail of the wealth distribution, not both.

Theorem 1 is of course obtained under very specific assumptions and, furthermore, pertains literally only to economies with linear consumption rules, that is, to very special microfoundations. Indeed infinitely-lived agent models with

3 Note that \(\chi_t \) will depend on the stochastic properties (i.e., the persistence and variance of its innovations) of the earnings process.

4 Some additional regularity conditions are required; see Benhabib, Bisin, and Zhu (2011) for details.

5 This is because \(y_t - \chi_t \) is a left shift of the earnings density \(y_t \), and if indeed it has a thick power tail, it must by its definition be decreasing in the right tail.
stochastic earnings and precautionary savings as in Aiyagari-Bewley economies generally display concave consumption functions. But assumptions can be substantially relaxed to allow for persistent (Markov-dependent) earning processes $y_t - \chi_t$, as well as for earnings and returns r_t which are correlated (see Ghosh et al. 2010 and Roitershtein 2007). Also, with Constant Relative Risk Aversion preferences, the consumption function in this class of models becomes linear at high wealth levels and the theorem applies asymptotically (see Benhabib, Bisin, and Zhu 2015 for a rigorous exposition and proofs). Moreover, linearity obtains in a larger class of Overlapping Generations Economies (Benhabib, Bisin, and Zhu 2011).

Even when holding as an approximation, the result does clearly point to the potential difficulty of matching the right tail of wealth distribution by relying solely on earnings. First of all, since the distribution of wealth has a thicker tail than the distribution of earnings, Theorem 1 directly suggests that the distribution of earnings cannot by itself explain the thick tail of the wealth distribution. In fact, the implications of the theorem are even more striking: the distribution of earnings is required to fit wealth data. This is exactly what the awesome state estimates, introduced with great success by Castañeda, Díaz-Giménez, and Ríos-Rull (2003), effectively achieve.

More precisely, an awesome state is a state added to the observed stochastic process for earnings whose properties are estimated in order to better match the wealth distribution. Castañeda, Díaz-Giménez, and Ríos-Rull (2003), in a rich overlapping-generation model with various demographic and life-cycle features, obtain estimates of the awesome state which requires the top 0.039 percent earners to have about 1,000 times the average labor endowment of the bottom 61 percent. With the recent availability of earnings data which have not been top coded, we can assess the reliability of this estimate. In fact, the ratio between even the top 0.01 percent and the median is at most of the order of 200 in the World Wealth and Income Database (WWID, 2011–2017). Similarly, Díaz, Pijoan-Mas, and Ríos-Rull (2003) estimate a top 6 percent of the population to earn 46 times the labor earnings of the median, while the top 5 percent in WWID earns about 5 times the median.

To better account for wealth inequality, and especially top wealth shares, we conclude it is necessary to rely on other factors. Remaining close to the Aiyagari-Bewley environment, for instance, several papers exploit heterogeneous life spans, adding death rates independent of age (“perpetual youth”) to amplify wealth inequality (see Benhabib and Bisin forthcoming for a survey). In such a framework, however, standard calibrations of demographics imply that a significant fraction of agents enjoy counterfactually long life spans. With stochastic but realistic finite life spans, these models fail to match the top shares of the wealth distribution (De Nardi, Fella, and Pardo 2016, p. 44).

Theorem 1 suggests instead a role for stochastic idiosyncratic returns to wealth. Available evidence suggests that the idiosyncratic rate of return on wealth (capital income) is composed, in large part, of returns to entrepreneurship (returns to private business equity). Since

6 We use WWID earnings data for 2014. The argument is not much changed even when considering average income, excluding capital gains.

7 See Quadrini (2000) and Cagetti and De Nardi (2006), and equivalently for stochastic discount factors, see Krusell and Smith (1998).
a good measure of these returns is generally hard to find, Benhabib, Bisin, and Luo (2015) explicitly estimates the stochastic properties of the Markov process for returns to match the distribution of wealth. Its conclusions are that stochastic idiosyncratic returns are essential for explaining the thickness of the wealth distribution.

Finally, other promising factors which possibly help explain the thick tail of the wealth distribution include nonhomogeneous bequests (see De Nardi 2004) and savings rates (increasing in wealth) as well as returns to wealth which are increasing in wealth (see Fagereng et al. 2016). Benhabib, Bisin, and Luo (2015) find that all these are statistically significant in a model which includes also stochastic earnings as well as stochastic returns to wealth.

REFERENCES

8Interestingly, the mean and standard deviation of estimated returns, 2.76 percent and 2.54 percent, respectively, closely match those estimated by Fagereng et al. (2016) for the idiosyncratic component of the lifetime rate of return on wealth.

Guvenen, Fatih, Fatih Karahan, Serdar Ozkan, and Jae Song. 2015. “What Do Data on Millions

5. Salvatore Morelli. 2020. The Dynamics of Wealth Concentration: Thoughts on Tony Atkinson’s Contributions. *Italian Economic Journal* **6**(1), 197-205. [Crossref]

