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The lexicon of a natural language does not contain all of the phonologi-
cal structures that are grammatical. This presents a fundamental chal-
lenge to the learner, who must distinguish linguistically significant
restrictions from accidental gaps (Fischer-Jørgensen 1952, Halle 1962,
Chomsky and Halle 1965, Pierrehumbert 1994, Frisch and Zawaydeh
2001, Iverson and Salmons 2005, Gorman 2013, Hayes and White
2013). The severity of the challenge depends on the size of the lexicon
(Pierrehumbert 2001), the number of sounds and their frequency distri-
bution (Sigurd 1968, Tambovtsev and Martindale 2007), and the com-
plexity of the generalizations that learners must entertain (Pierrehum-
bert 1994, Hayes and Wilson 2008, Kager and Pater 2012, Jardine and
Heinz 2016).

In this squib, we consider the problem that accidental gaps pose
for learning phonotactic grammars stated on a single, surface level
of representation. While the monostratal approach to phonology has
considerable theoretical and computational appeal (Ellison 1993, Bird
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and Ellison 1994, Scobbie, Coleman, and Bird 1996, Burzio 2002),
little previous research has investigated how purely surface-based pho-
notactic grammars can be learned from natural lexicons (but cf. Hayes
and Wilson 2008, Hayes and White 2013). The empirical basis of our
study is the sound pattern of South Bolivian Quechua, with particular
focus on the allophonic distribution of high and mid vowels. We show
that, in characterizing the vowel distribution, a surface-based analysis
must resort to generalizations of greater complexity than are needed
in traditional accounts that derive outputs from underlying forms. This
exacerbates the learning problem, because complex constraints are
more likely to be surface-true by chance (i.e., the structures they pro-
hibit are more likely to be accidentally absent from the lexicon). A
comprehensive quantitative analysis of the Quechua lexicon and pho-
notactic system establishes that many accidental gaps of the relevant
complexity level do indeed exist.

We propose that, to overcome this problem, surface-based phono-
tactic models should have two related properties: they should use dis-
tinctive features to state constraints at multiple levels of granularity,
and they should select constraints of appropriate granularity by statisti-
cal comparison of observed and expected frequency distributions. The
central idea is that actual gaps typically belong to statistically robust
feature-based classes, whereas accidental gaps are more likely to be
featurally isolated and to contain independently rare sounds. A maxi-
mum-entropy learning model that incorporates these two properties is
shown to be effective at distinguishing systematic and accidental gaps
in a whole-language phonotactic analysis of Quechua, outperforming
minimally different models that lack features or perform nonstatistical
induction.

1 Vowel Height Allophony in Quechua

1.1 The Pattern and Traditional Analysis

Descriptively, South Bolivian Quechua (henceforth Quechua; Bills,
Troike, and Vallejo 1971, Laime Ajacopa 2007, Gallagher 2016) has
three phonemic vowels /i u a/ with allophonic lowering of /i u/ to [e
o] in the vicinity of uvulars /q qh q’/. Mid vowels occur immediately
following or preceding a uvular (1a–b), or preceding a uvular across
an intervening coda (1c). High vowels occur in all other consonantal
environments (2).

A traditional analysis of this pattern would assign the high vowels
elsewhere status and specify the contexts in which mid vowels occur.

(1) Uvular contexts: [e o] *[i u]
a. q’epij (*q’ipij) ‘to carry’ q’o«i (*q’u«i) ‘hot’
b. peqaj (*piqaj) ‘to grind’ noqa (*nuqa) ‘I’
c. wesq’aj (*wisq’aj) ‘to close’ torqa (*turqa) ‘son-in-law’

(2) Elsewhere: [i u] *[e o]
misi (*mese) ‘cat’ kurku (*korko) ‘type of bird’
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In an SPE-style account (Chomsky and Halle 1968), only high vowels
would appear in underlying representations and mid vowels would be
derived by rule. In Optimality Theory/Harmonic Grammar (OT/HG),
the complementary distribution would follow from subordinating a
general constraint against mid vowels (*E) to specific constraints
against high vowels before or after a uvular (3). (Natural classes are
abbreviated throughout as follows: K � velar consonant, Q � uvular
consonant, I � high vowel, E � mid vowel, V � any vowel. The
constraints in (3) apply on the dorsal tier, as specified in table 1 below.)

1.2 Analysis with Surface-Based Constraints

The Quechua distribution of high and mid vowels, despite being a
typologically unremarkable instance of allophonic variation, is more
difficult to analyze in monostratal phonology. The restrictions on high
vowels can remain as above (*QI, *IQ). But an inviolable surface
constraint *E would be overly restrictive, as mid vowels do occur
in grammatical forms. Even in a surface-based model with violable
constraints, *E would still be inadequate: it would penalize all surface
mid vowels equally and thus miss the crucial difference between (for
example) grammatical [qena] and ungrammatical *[pena].

In place of *E, there must be several surface constraints against
mid vowels in the exhaustive set of “nonuvular” environments. We
provide an example analysis in (4), with restrictions again stated on
the dorsal tier (which contains velar and uvular consonants along with
all vowels). This tier accounts for the segmentally nonlocal interaction
between a uvular and a nonhigh vowel across an intervening coda (e.g.,
[orqo] ‘mountain’) and also has the welcome side effect of reducing the
number of “nonuvular” contexts that must be enumerated.

(4) a. Surface-true constraints on high vowels in uvular con-
texts (as in (3))
*Q I *I Q

b. Surface-true constraints on mid vowels in “nonuvular”
contexts
*# E K *K E K *V E K
*# E # *K E # *V E #
*# E V *K E V *V E V

Trigram constraints like those of (4b) are necessary because a mid
vowel can be licensed by a uvular on either side. To exclude mid
vowels in unlicensed contexts only, the constraints must ensure that
something other than a uvular both precedes and follows.

*QI, *IQ /mesi/*E ID[high] *QI, *IQ *E ID[high](3)

*!

*!

*

* mesi*

/piqaj/

piqaj → misi

→ peqaj
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1.3 Accidental Gaps in Quechua

While the preceding analysis may be judged inelegant, our main con-
cern is with the consequences it has for learning. Previous research
on surface-based phonotactic induction has primarily limited con-
straints to a maximum length of two (i.e., unigrams or bigrams; Ellison
1993, Adriaans and Kager 2010, Jardine and Heinz 2016, Jardine and
McMullin 2017; cf. Hayes and Wilson 2008).1 However, trigram con-
straints are required to analyze patterns in which a sound can be condi-
tioned by context on either side, as we have just shown for Quechua,
and in the analysis of both-side conditioning such as intervocalic voic-
ing and lenition. The general expectation is that permitting constraints
of greater complexity will make the problem of distinguishing system-
atic and accidental gaps more challenging, as complex structures are
more likely to be unattested by chance.

To quantify the problem for Quechua, we constructed an exhaus-
tive list of hypothetical CV(C)CV(C) forms (�560,000 items) for
which the position-specific segments and medial consonant clusters
are attested in roots. We then divided this list of hypothetical roots
into those that satisfy the known phonotactic generalizations given in
table 1 and those that violate one or more generalizations. (For further
discussion of the phonotactic restrictions in Quechua, and of the laryn-
geal cooccurrence restrictions in particular, see MacEachern 1999 and
Gallagher 2011, 2016.) We compared the tier-based trigrams that occur
in the list of legal hypothetical roots with those in a lexicon of 1,104
actual roots compiled from the Laime Ajacopa (2007) dictionary and

Table 1
Quechua tiers and phonotactic generalizations

Tier Projected segments Phonotactic generalizations

Dorsal Dorsal consonants, vowels High-mid vowel allophony
C-dorsala Dorsal consonants, � *K . . . Q, *Q . . . K (within

morphemes)
Laryngeal Stops, affricates, h, ≈ Laryngeal cooccurrence restrictions
Segmental All, � *VV, *CCC, *wu, *wo
a The C-dorsal tier contains a morpheme boundary symbol (�), allowing the model to represent the fact that the restriction
on uvular and velar consonant cooccurrence holds within morphemes but not across them.

1 Many additional computational approaches to phonotactics, speech seg-
mentation, and phoneme learning have also in practice limited generalizations
to unigrams and bigrams (Vitevitch and Luce 2004, Peperkamp et al. 2006,
Kirby and Yu 2007, Albright 2009, Adriaans and Kager 2010, Heinz 2010,
Daland and Pierrehumbert 2011, Kempton and Moore 2014, Calamaro and
Jarosz 2015; cf. Martin, Peperkamp, and Dupoux 2013) and would have to be
extended to account for Quechua. See Pierrehumbert 1994 and Kager and Pater
2012 for evidence of speaker knowledge of complex phonotactic restrictions.
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verified with a native speaker.2 On the segmental tier, there are 2,966
unique trigram sequences in the hypothetical roots, but only 1,472
(49%) of them are attested in the root lexicon. That is, on the segmental
tier there are about as many trigram accidental gaps as there are attested
trigrams. The ratio of attested to legal trigrams is higher on the other
tiers, but several accidental gaps nevertheless exist for each one (dorsal
tier: 193 attested / 204 legal; C-dorsal tier: 17 / 19; laryngeal tier:
167 / 176).

The unattested legal trigrams typically contain rare segments. For
example, the sequence [eqho] is legal but unattested, reflecting the fact
that aspirated dorsals are infrequent in medial position generally and
that [e] is the least common surface vowel in the language. However,
not all unattested sequences containing rare parts are accidental gaps.
For example, [kh] is among the rarest segments in Quechua, and the
sequence [khek] has zero frequency like [eqho], but in this case the
gap is principled (see section 2.1). Considerations of this sort indicate
that a surface-based phonotactic learner should induce constraints on
a statistical basis, so that it can avoid penalizing sequences like [eqho]
that are unlikely to occur simply by chance, and that the learned con-
straints should be stated with features, so that sequences like [khek]
can be brought under more general constraints (e.g., *KEK) rather
than being ruled out individually.

2 Surface-Based Phonotactic Learning Models

2.1 Feature-Based Statistical Model

The maximum-entropy phonotactic model developed by Hayes and
Wilson (2008) has both of the properties that we have identified as
important for overcoming the problem of accidental gaps. Constraints
in the model are stated with features and can range from segment-
specific (e.g., “No [≈] in noninitial position”) to very broad (e.g., “No
initial vowels”). Among other criteria, the model prefers to induce
new constraints that have low ratios of observed to expected violation
frequencies (where expected violations are statistical quantities deter-
mined by the current grammar of weighted constraints).

This model has supported attempts to learn the entire phonotactic
pattern of a natural language (i.e., Hayes and Wilson 2008 on Warga-
may and Hayes and White 2013 on English). However, the attempts

2 While this is a relatively small number of forms, there is reason to believe
that it provides a fair representation of the range of phonotactic possibilities
that Quechua learners would encounter. Because the root list is derived from
a dictionary, it includes many rare words that may provide the single instance
of a particular sequence. A corpus of �10,000 forms, recently compiled by
one of the authors from the newspaper Conosur Ñawpaqman (http://
www.cenda.org/periodico-conosur), had substantially less phonotactic diver-
sity than the small root list. For example, the cluster [r<h] is attested in a single
root in the dictionary list, but this root is absent from the newspaper corpus.
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have been only partly successful: constraints corresponding to previous
phonotactic descriptions were learned, but the induced grammars also
included many constraints that penalize accidental gaps. In pursuit of
the present goal of learning all and only the phonotactic restrictions
of Quechua, we modified the original model in two ways.

(i) Initialization. Grammars were initialized with a separate viola-
ble constraint for each segment in the Quechua inventory. When appro-
priately weighted, these constraints are equivalent to a unigram sto-
chastic model of the learning data. The general purpose of this kind of
initialization is to prevent the model from learning complex constraints
against sequences that contain rare segments (e.g., as in the [eqho]
example above).

(ii) Gain-based constraint selection. A grammar was induced one
constraint at a time by calculating the gain of each surface-true con-
straint. The gain of constraint C is proportional to the highest log
probability (of the learning data) that could be obtained by adding C
to the grammar while holding all other constraints and their weights
fixed (see Della Pietra, Della Pietra, and Lafferty 1997). This criterion
favors constraints that are violated substantially less often in the data
than their expected values would predict: the current grammar assigns
too much probability to structures that violate such constraints, proba-
bility that could be profitably reallocated to attested structures. On
each round of constraint selection, the constraint on each tier with
highest gain above a fixed threshold � was added to the grammar (we
evaluated various thresholds and report results for � � 100.0). Learn-
ing halted when no constraint had sufficient gain.3

For the purpose of comparison to alternatives below, we refer to
this model as Maxent-Ftr. In principle, the model could induce gradient
phonotactic grammars containing violable constraints. However, the
Quechua phonotactics described earlier are categorical, and one of the
alternative models discussed below is inherently nongradient; there-
fore, we required all of the constraints induced by Maxent-Ftr to be
surface-true.

2.2 Alternative Models

The first alternative we considered, called Maxent-Seg, is identical to
Maxent-Ftr except that constraints are stated over segments. While
features are traditionally used in phonotactic descriptions, some recent
models eschew them (e.g., Heinz 2010, Heinz and Rogers 2010; cf.

3 Application of the gain threshold is related to L1 regularization (e.g.,
Perkins, Lacker, and Theiler 2003) and to the cost of constraints in MDL
models (e.g., Rasin and Katzir 2016), because it penalizes the addition of a
new constraint regardless of its weight. We also included a term that penalizes
large weights, �∑iwi

2, but set � equal to a small constant (1.0e�5) that made
this penalty negligible.
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Heinz and Koirala 2010).4 The comparison of Maxent-Ftr and Maxent-
Seg provides a close examination of how learning is facilitated by
allowing constraints to refer to segment classes. Maxent-Seg was ini-
tialized in the same way as Maxent-Ftr and used the same statistical
criterion for inducing surface-true constraints.

The second alternative is a nonstatistical version of Maxent-Seg,
referred to as Memory-Seg, that was inspired by recent formal language
research (Heinz, Rawal, and Tanner 2011, Jardine and Heinz 2016,
McMullin 2016, Jardine and McMullin 2017; see also de la Higuera
2010). While our presentation of the model draws upon that work, the
research question addressed here is quite different. We are interested
in the grammars that models learn from natural “gappy” data—not in
the important but distinct question of what is provably learnable from
hypothetical data in which all legal structures are exemplified.

In the Memory-Seg model, a grammar is defined as a set Gt of
legal substrings for each tier t. At the onset of learning, each Gt is
empty. The sets are then updated with the substrings of forms that
are encountered during learning. For example, the form [torqa] is
represented as [oqa] on the dorsal tier and the substrings of length 1
to 3 that it contributes to Gdorsal are [o], [q], [a] (omitting word bounda-
ries); [#o], [oq], [qa], [a#]; and [#oq], [oqa], [qa#]. In essence, learning
involves memorizing the segment sequences that are observed on each
tier. This requires significantly less computation than in Maxent-Ftr
or Maxent-Seg, because expected frequencies need not be calculated.
The one free parameter of the model is the maximum subsequence
length (n), directly parallel to the maximum constraint length in the
two Maxent models.

A form is ungrammatical with respect to a Memory-Seg grammar
iff it contains at least one substring of length 1 � m � n, on at least
one tier t, that is not in Gt. For example, a grammar learned from the
Quechua lexicon with n � 3 would not contain the substring [#ei] on
the dorsal tier and would therefore correctly identify *[mesi] as illegal.

What about a third logically possible alternative, a nonstatistical
model like Memory-Seg that learns by memorizing feature sequences
(i.e., Memory-Ftr)? The immediate problem confronting such a model
is that any given segment sequence has multiple different featural
representations. For example, the attested dorsal-tier trigram [oqa]
could be represented with very general classes (e.g., [�syll][�syll]
[�syll] � VCV), with maximally specific classes (i.e., [�syll, �high,
�low, �back][�cont, �son, �dorsal, �high, �cg][�syll, �high,
�low] � [oqa]), or at intermediate levels of granularity (e.g., [�syll,
�high, �low][�cont, �son, �dorsal, �high][�syll, �high, �low]
� EQA).

4 Segmental n-gram models are also commonplace in natural language
processing (e.g., Jurafsky and Martin 2000), but are typically limited to one
segmental tier and contiguous sequences (but cf. Ron, Singer, and Tishby 1996).
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If hypothetical Memory-Ftr judged a substring to be legal as long
as it satisfied any attested featural description, it would tolerate (among
other structures) every VCV trigram and thus massively overgeneral-
ize. If the model instead required all feature representations of a sub-
string to be attested, it would be equivalent to Memory-Seg (as seg-
ments correspond to singleton classes). Lacking a method for deciding
which representations are relevant for assessing well-formedness—
precisely the role played by statistics in Maxent-Ftr—learning in
Memory-Ftr is doomed.

3 Results

We evaluated Maxent-Ftr, Maxent-Seg, and Memory-Seg with five-
fold cross-validation (e.g., Hastie, Tibshirani, and Friedman 2001,
Mohri, Rostamizadeh, and Talwalkar 2012). The complete learning
data consisted of the Quechua root lexicon (section 1.3), as well as
forms derived from the roots by adding phonologically representative
suffixes (-nku ‘3pl present’, -spa ‘gerund’, -rqa ‘3sg past’) and apply-
ing vowel lowering when appropriate. The lexicon was divided into
five parts, or folds, of roughly equal size (approx. 870 forms). Each
fold served as a set of legal held-out test forms for models trained on
the combination of the other four folds. Testing also included the
exhaustive set of CV(C)CV(C) nonce roots discussed earlier (section
1.3), each categorized as legal or illegal according to table 1.

The models were provided with the same tiers and allowed to
learn generalizations up to length 3.5 For Maxent-Ftr/-Seg, a test form
was grammatical iff it satisfied all of the learned constraints. For Mem-
ory-Seg, grammaticality was determined as described above. Table 2
shows the proportion of test forms judged grammatical by each model.
The models performed comparably on attested but held-out forms.
Maxent-Ftr generalized far more successfully to nonce roots, ruling
out essentially all of the illegal forms and accepting the great majority

Table 2
Proportion of test forms judged grammatical by each model

Held-out forms Legal nonce roots Illegal nonce roots

Maxent-Ftr 99.8% 82.2% 1.9%
Maxent-Seg 99.7% 71.5% 45.4%
Memory-Seg 96.7% 18.8% 0.1%

5 In principle, the learner could discover both the need for tiers and their
contents (Goldsmith and Riggle 2012, Jardine and Heinz 2016, Jardine and
McMullin 2017), though we anticipate that tier induction mechanisms will also
be highly sensitive to accidental gaps in the data. We are unaware of attested
phonotactic generalizations in Quechua or other languages that exceed the tri-
gram limit adopted here.
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of the legals. Nearly all (96%) of the false negatives made by this
model involved forms with root-final consonants ([n s r w j x]), which
occur rarely in the lexicon and may in fact be phonotactically mar-
ginal.6 Maxent-Seg both undergenerated and massively overgenerated
(e.g., it accepted illegal forms such as *[p’ap’a] that violate laryngeal
cooccurrence restrictions). This comparison indicates that statistical
calculations alone, in the absence of features or the classes they define,
do not suffice for phonotactic learning. Finally, the Memory-Seg gram-
mars showed extreme undergeneralization: by judging forms as un-
grammatical if they contained accidental gaps such as [eqho], these
grammars accepted less than 20% of the novel legal roots.

The Maxent-Ftr model largely refrained from inducing con-
straints against [eqho] and other gaps because the relevant segments
are rare (i.e., the expected violations of segment-specific constraints
are too small) and because more general constraints (e.g., *EQE) are
violated by many attested forms (i.e., their observed violations are too
large). The inclusion of featural representations allows the model to
generalize the patterning of more frequent [q q’] to less frequent [qh]
and the patterning of more frequent [o] to less frequent [e]. Stating
generalizations over the classes of “uvular consonants” and “mid
vowels” is necessary to avoid overgeneralization and accurately cap-
ture the phonotactics of the language beyond the strictly attested tri-
gram sequences.

4 Conclusion

Most research on phonotactic learning has not thoroughly considered
the problem of accidental gaps. Previous work that does address the
problem has focused on specific constraints of English (e.g.,
Pierrehumbert 1994, Gorman 2013, Hayes and White 2013) or
achieved limited results on other languages (Hayes and Wilson 2008).
In our case study of Quechua, we have shown that a surface-based
analysis of the phonotactic pattern must include several trigram con-
straints and that, when analyzed at the level of segmental trigrams,
the lexicon is full of accidental gaps. Because the phonotactic distribu-
tion of Quechua is typologically unexceptional, we anticipate that
quantitative comparison of attested and legal sound structures in other
languages will yield similar results.7

We have further shown that learning the phonotactic pattern of
Quechua is within reach of a model that employs statistical computa-
tions to induce constraints over featural representations. A minimally

6 Word-final consonants are frequent in the language as a whole, but they
are rare in roots and in our learning set (which did not include any consonant-
final suffixes).

7 Indeed, the “sparse data” problem addressed here becomes more severe,
and may arise even for bigram constraints, as more detail is represented in
surface forms. For Quechua, we transcribed allophonic vowel height, but not
the tense/lax vowel distinction conditioned by syllable structure nor the variable
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different segmental model overgeneralized, because some parochial
constraints were too statistically weak to meet the induction criterion.
A model that forgoes both statistics and features had the opposite
problem: ignoring the possibility that some sequences will be absent
by chance, it incorrectly penalized all unattested trigrams. The stark
differences in model performance underscore the value of studying
phonotactic learning from inevitably sparse natural language data.

While features are a traditional component of phonological analy-
sis, and the granularity and statistical character of phonotactic restric-
tions have been discussed previously (Coleman and Pierrehumbert
1997, Pierrehumbert 2001, 2003, Moreton and Pater 2012), our results
provide support for the claim that features and statistics are jointly
required for phonotactic learning (Hayes and Wilson 2008, Albright
2009, Adriaans and Kager 2010). Together with other representational
devices, such as identity relations (Berent et al. 2012), features allow
multiple segment-level restrictions to be combined into single phono-
tactic generalizations. For example, the similar patterning of [q], [q’],
and [qh] in the sound pattern of Quechua can be captured with a class
that includes these sounds while excluding other stops and other dor-
sals. This is not only a matter of economy or elegance: feature-based
generalizations can have statistical properties that their individual seg-
ment-specific instantiations do not share. The segment [qh] may be
too rare to support strong generalizations on its own, but its phonotactic
behavior can be analyzed and learned in terms of the active classes
to which it belongs (i.e., uvular stops, aspirated obstruents, etc.).

All of the present results have been obtained within a monostratal
theory of phonotactics. This approach has a parsimonious architecture
and a straightforward computational implementation. In particular, a
probability distribution over the set of grammatical forms can be repre-
sented by a weighted finite-state machine that provides for efficient
computation of expected constraint violations (Eisner 2002). While
related implementations are possible for rule-based systems (e.g., Bird
and Ellison 1994, Kaplan and Kay 1994), there is no known method
for converting an OT/HG grammar into a machine that explicitly rep-
resents the set of well-formed outputs or a distribution over them. This
places a practical limit on the statistical computations that can be
employed for learning in derivational constraint-based theories (but
cf. Cotterell, Peng, and Eisner 2015). However, we have demonstrated
that monostratal theories have the disadvantage that certain typologi-
cally common patterns, such as the allophonic variation of Quechua

production of uvular stops (i.e., /q/ may be [q], [˛], or [y]; /qh/ may be [qh]
or [n]; /q’/ may be [q’] or [z�]). Transcribing all such distinctions would increase
the number of possible surface sequences and compound the problem of distin-
guishing linguistically significant and accidental gaps (e.g., Martin, Pepercamp,
and Dupoux 2013).
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vowels, require analyses of greater complexity than in two-level theo-
ries. The development of phonotactic models should build on the com-
putational strengths of single-level theories while striving for the ana-
lytic simplicity that is captured in models with input-output mappings.
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