Low-level features and timbre

Juan Pablo Bello
EL9173 Selected Topics in Signal Processing: Audio Content Analysis
NYU Poly
Audio signal analysis

- **raw input**
 - **low-level representation**
 - e.g: spectral flux, ACF, cepstrum
 - **mid-level representation**
 - e.g: pitch, onsets, texture
 - **high-level representation**
 - e.g: speaker, style, mood, environment

[... 0.2 0.1 0.05 -0.05 -0.1 ...]
Low-level features

• The raw input data is often too large, noisy and redundant for analysis.

• Feature extraction: input signal is transformed into a new (smaller) space of variables that simplify analysis.

• Features: measurable properties of the observed phenomenon, usually containing information relevant for pattern recognition.

• They result from neighborhood operations on the input signal. If the operation produces a local decision -> feature detection.

• Usually one feature is not enough: combine several features into feature vectors, describing a multi-dimensional space.
Timbre

• Timbre: tonal qualities that define a particular sound/source. It can refer to, e.g., class (e.g. male, piano, truck), or quality (e.g. bright, rough, thin)

• Oftentimes defined comparatively: attribute that allows us to differentiate sounds of the same pitch, loudness, duration and spatial location (Grey, 75)

• Timbre spaces: empirically measure the perceived (dis)similarity between sounds and project to a low-dimensional space where dimensions are assigned a semantic interpretation (brightness, temporal variation, synchronicity, etc).

• Audio-based: recreate timbre spaces by extracting low-level features with similar interpretations (centroid, spectral flux, attack time, etc). Most of them describe the steady-state spectral envelope.
Temporal features

- The root-mean-square (RMS) level coarsely approximates loudness:

\[
\text{RMS}(m) = \sqrt{\frac{1}{N} \sum_{n=-N/2}^{N/2} (x(n + mh))^2 w(n)}
\]

- Zero-crossing rate (ZCR) is a weighted measure of the number of times the signal changes sign in a frame:

\[
\text{ZCR}(m) = \frac{1}{2N} \sum_{n=-N/2}^{N/2} |\text{sgn}(x(n + mh)) - \text{sgn}(x(n + mh - 1))|
\]

\[
\text{sgn}(x) = \begin{cases}
1 & \text{if } x > 0 \\
0 & \text{if } x = 0 \\
-1 & \text{if } x < 0
\end{cases}
\]
Temporal features

- ZCR is high for noisy (unvoiced) sounds and low for tonal (voiced) sounds.
- For simple periodic signals, it is roughly related to the fundamental frequency.

![Graph showing RMS Energy and ZCR for Groove Armada's song Whatever, Whenever.](image)
Spectral flatness

• Spectral flatness is a measure of the noisyness of the magnitude spectrum.

• It is the ratio between the geometric and arithmetic means:

\[
SF(m) = \frac{\left(\prod_{k} |X(m, k)| \right)^{\frac{1}{K}}}{\frac{1}{K} \sum_{k} |X(m, k)|}
\]

• Different filterbanks can be used for pre-processing, s.t. k refers to band number and K to total number of bands.

• It is often used as a “tonality” coefficient (in dB)
Spectral flatness
Spectral features

• The most common is the spectral centroid (SC):

\[SC(m) = \frac{\sum_k f_k |X(m, k)|}{\sum_k |X(m, k)|} \]

• It is usually associated with the sound’s “brightness”

• Spectral spread (SS) is a measure of the bandwidth of the spectrum:

\[SS(m) = \frac{\sum_k (f_k - SC(m))^2 |X(m, k)|}{\sum_k |X(m, k)|} \]

• Higher-order moments can be used to characterize the asymmetry and peakedness of the distribution
Spectral features
SC and SS define a coarse (unimodal) model of the spectral envelope.
The human speech system

• The vocal chords act as an oscillator

• The mouth cavity, tongue, and throat act as filters

• We can shape a tonal sound (‘oooh’ vs ‘aaah’)

• We can whiten the signal (‘ssssshhh’)

• We can produce pink noise by removing high frequencies
Source-filter model
Channel Vocoder

• Decomposes the sound using a bank of bandpass filters + sums magnitude for each bandpass signal

• For a set of L-long filters w overlapped by L-1 bins:

$$CV(m) = |X(m, k)| \ast w(k)$$

$$CV(m) = \Re \left(\text{IFFT} \left[\text{FFT}(|X(m, k)|) \times \text{FFT}(w(k)) \right] \right)$$

• $w(k)$ is normalized to unit sum, zero-padded to the length of X, and circularly shifted s.t. its center coincides with the first bin.
Channel Vocoder

- The spectral envelope approximation is coarser/finer depending on L
Linear predictive coding (LPC) is a source-filter analysis-synthesis methodology that approximates sound generation as an excitation (a pulse train or noise) passing through an all-pole resonant filter.

- Extensively used in speech and music applications. It reduces the amount of data to a few filter coefficients.

- It derives its name from the fact that output samples are predicted as a linear combination of filter coefficients and previous samples.
Linear Predictive Coding

• The input sample $x(n)$ is extrapolated, i.e. approximated by a linear combination of past samples of the input signal:

$$ x(n) \approx \hat{x} = \sum_{k=1}^{p} a_k x(n - k) $$

• Because this is a prediction we always have a residual error:

$$ e(n) = x(n) - \hat{x} = x(n) - \sum_{k=1}^{p} a_k x(n - k) $$
Linear Predictive Coding

• The prediction error calculation can be implemented by means of a FIR filter:

\[P(z) = \sum_{k=1}^{p} a_k z^{-k} \]

• The z-transform of the prediction filter is:

\[E(z) = Z(z)[1 - P(z)] \]
Linear Predictive Coding

• The inverse filter can be defined as:

\[
A(z) = 1 - P(z) = 1 - \sum_{k=1}^{p} a_k z^{-k} \quad \text{s.t.} \quad E(z) = X(z)A(z)
\]

• For synthesis we use an approximation of the residual as the excitation used as input to the all-pole (LPC) filter, resulting on the model:

\[
Y(z) = \tilde{E}(z)H(z)
\]

\[
H(z) = \frac{1}{A(z)} = \frac{1}{1 - P(z)}
\]
Linear Predictive Coding

- The IIR filter $H(z)$ is known as the LPC filter and represents the spectral model of $x(n)$.

- With optimal coefficients, residual energy is minimized.

- The higher the coefficient order p, the closer the approximation is to $|X(k)|$.