The processing cost of weak modality
and consequences for child production and typology

Paloma Jeretič

paloma@nyu.edu

Meaning and Modality Lab, Harvard
April 12, 2019
Do these two sentences have a different processing cost?

(1) You can go to school.

(2) You must go to school.
Do these two sentences have a different processing cost?

(1) You can go to school. \leadsto You don't have to go to school.

(2) You must go to school. \leadsto \emptyset

(1) generates an implicature, (2) doesn't
Introduction

- Do these two sentences have a different processing cost?

(1) You can go to school. \(~\rightarrow\) You don’t have to go to school.

(2) You must go to school. \(~\rightarrow\) ∅

- (1) generates an implicature, (2) doesn’t
- (1) gives the subject a choice, i.e. gives them a possible burden of decision-making, inexistent with (2)
Introduction

Do these two sentences have a different processing cost?

(1) You can go to school. \leadsto You don’t have to go to school.

(2) You must go to school. \leadsto \emptyset

- (1) generates an implicature, (2) doesn’t
- (1) gives the subject a choice, i.e. gives them a possible burden of decision-making, inexistent with (2)
- (1) is associated with indeterminacy, (2) is not
Introduction

Do these two sentences have a different processing cost?

(1) You can go to school. \rightsquigarrow You don't have to go to school.

(2) You must go to school. \rightsquigarrow \emptyset

- (1) generates an implicature, (2) doesn't
- (1) gives the subject a choice, i.e. gives them a possible burden of decision-making, inexistent with (2)
- (1) is associated with indeterminacy, (2) is not

Hypothesis: Weak modal expressions are more costly than strong ones
Questions I will address today

1. Can I confirm this hypothesis?
 - I test it by measuring accuracy and reaction time in a truth-value judgment task with weak and strong modal expressions
 - Results at least partially support it: negated weak modals yield longer reaction times and lower accuracy rates

2. Can this higher processing cost affect child acquisition of modal expressions?
 - I present a child corpus study that shows results consistent with the hypothesis:
 - children begin producing strong modal expressions before weak ones
 - lower proportions of weak negated modals, compared to adults

3. Cross-linguistically, the inventory and behavior of functional modal expressions shows a sparseness of weak expressions: could processing cost provide an explanation?
Questions I will address today

1. Can I confirm this hypothesis?
 - I test it by measuring accuracy and reaction time in a truth-value judgment task with weak and strong modal expressions

2. Can this higher processing cost affect child acquisition of modal expressions?
 - I present a child corpus study that shows results consistent with the hypothesis:
 - children begin producing strong modal expressions before weak ones
 - lower proportions of weak negated modals, compared to adults

3. Cross-linguistically, the inventory and behavior of functional modal expressions shows a sparseness of weak expressions: could processing cost provide an explanation?
Questions I will address today

1. Can I confirm this hypothesis?
 - I test it by measuring accuracy and reaction time in a truth-value judgment task with weak and strong modal expressions
 - Results at least partially support it: negated weak modals yield longer reaction times and lower accuracy rates
Questions I will address today

1. Can I confirm this hypothesis?
 ▶ I test it by measuring accuracy and reaction time in a truth-value judgment task with weak and strong modal expressions
 ▶ Results at least partially support it: negated weak modals yield longer reaction times and lower accuracy rates

2. Can this higher processing cost affect child acquisition of modal expressions?
Questions I will address today

1. Can I confirm this hypothesis?
 ▶ I test it by measuring accuracy and reaction time in a truth-value judgment task with weak and strong modal expressions
 ▶ Results at least partially support it: negated weak modals yield longer reaction times and lower accuracy rates

2. Can this higher processing cost affect child acquisition of modal expressions?
 ▶ I present a child corpus study that shows results consistent with the hypothesis:
 ▶ children begin producing strong modal expressions before weak ones
 ▶ lower proportions of weak negated modals, compared to adults
Questions I will address today

1. Can I confirm this hypothesis?
 - I test it by measuring accuracy and reaction time in a truth-value judgment task with weak and strong modal expressions
 - Results at least partially support it: negated weak modals yield longer reaction times and lower accuracy rates

2. Can this higher processing cost affect child acquisition of modal expressions?
 - I present a child corpus study that shows results consistent with the hypothesis:
 - children begin producing strong modal expressions before weak ones
 - lower proportions of weak negated modals, compared to adults

3. Cross-linguistically, the inventory and behavior of functional modal expressions shows a sparseness of weak expressions: could processing cost provide an explanation?
Outline

1. Weak and strong modality

2. Experimental study: Processing weak and strong modality

3. Child corpus study: acquiring weak and strong functional modals

4. A look at the typology
Outline

1. Weak and strong modality

2. Experimental study: Processing weak and strong modality

3. Child corpus study: acquiring weak and strong functional modals

4. A look at the typology
Weak and strong functional root modals (in English, French, Spanish)

<table>
<thead>
<tr>
<th>Strength of modal expression</th>
<th>Possibility: Existential Quantification</th>
<th>Necessity: Universal Quantification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weak</td>
<td>can</td>
<td>not have to</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>peut</td>
<td>pas besoin, doit pas</td>
</tr>
<tr>
<td></td>
<td>puedo</td>
<td>no necesita, no tiene que</td>
</tr>
<tr>
<td>Strong</td>
<td>can’t</td>
<td>must</td>
</tr>
<tr>
<td></td>
<td>¬</td>
<td>faut</td>
</tr>
<tr>
<td></td>
<td>no puedo</td>
<td>tiene que</td>
</tr>
<tr>
<td></td>
<td>¬</td>
<td>can’t</td>
</tr>
<tr>
<td></td>
<td>no debe, no tiene que</td>
<td>mustn’t</td>
</tr>
</tbody>
</table>

- Weak is logically equivalent to wide scope existential quantification
- Strong is logically equivalent to wide scope universal quantification
Weak and strong functional root modals (in English, French, Spanish)

Force of modal form

Possibility (existential quantification) vs. **Necessity** (universal quantification)

<table>
<thead>
<tr>
<th>Weak</th>
<th>Strong</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can</td>
<td>Can’t</td>
</tr>
<tr>
<td>Peut</td>
<td>Peut pas</td>
</tr>
<tr>
<td>Puede</td>
<td>No puede</td>
</tr>
<tr>
<td>NA</td>
<td>Must</td>
</tr>
<tr>
<td>Mustn’t</td>
<td>Faut pas, doit pas</td>
</tr>
<tr>
<td>No necesitas, no tiene que</td>
<td>No debe, no tiene que</td>
</tr>
</tbody>
</table>

Strength of modal expression

Weak
- Logically equivalent to wide scope
- **Existential quantification**

Strong
- Logically equivalent to wide scope
- **Universal quantification**
Weak and strong functional root modals (in English, French, Spanish)

force of modal form

Possibility

- **Weak**
 - Logical equivalence to wide scope: \(\exists \) quantification
 - Examples: *can*, *peut*, *puede*
- **Strong**
 - Logical equivalence to wide scope: \(\forall \) quantification
 - Examples: *must*, *faut*, *tiene que*, *can’t*, *peut pas*, *no puede*

Necessity

- **Weak**
 - Logical equivalence to wide scope: \(\exists \) quantification
 - Examples: *not have to*, *pas besoin, doit pas*, *no necesita, no tiene que*
- **Strong**
 - Logical equivalence to wide scope: \(\forall \) quantification
 - Examples: *mustn’t*, *faut pas, doit pas*, *no debe, no tiene que*
Weak and strong functional root modals (in English, French, Spanish)

force of modal form

<table>
<thead>
<tr>
<th></th>
<th>possibility</th>
<th>necessity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>existential quantification</td>
<td>universal quantification</td>
</tr>
<tr>
<td>weak</td>
<td>can</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>can</td>
</tr>
<tr>
<td></td>
<td>−</td>
<td>not have to</td>
</tr>
<tr>
<td></td>
<td>−</td>
<td>no necesita, no tiene que</td>
</tr>
<tr>
<td>strong</td>
<td>must</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>must</td>
</tr>
<tr>
<td></td>
<td>−</td>
<td>can’t</td>
</tr>
<tr>
<td></td>
<td>−</td>
<td>no puede</td>
</tr>
</tbody>
</table>

weak logically equivalent to wide scope ∃ quantification

strong logically equivalent to wide scope ∀ quantification
Outline

1. Weak and strong modality

2. Experimental study: Processing weak and strong modality

3. Child corpus study: acquiring weak and strong functional modals

4. A look at the typology
The processing of weak modality

- The literature on the processing of modal force is very sparse
- It contrasts with a huge amount of literature on force of nominal quantifiers, in particular for scalar implicature computation (e.g. *some* \rightsquigarrow *not all*):
 - implicature generation in the nominal quantifier domain is associated with a processing cost (Degen & Tanenhaus, 2016; Papafragou & Musolino, 2003; Pouscoulous, Noveck, Politzer, & Bastide, 2007, a.m.o)
 - impacting L1 acquisition (Barner & Bachrach, 2010; Chierchia, Crain, Guasti, Gualmini, & Meroni, 2001; Huang & Snedeker, 2009; Noveck, 2001; Papafragou, 2006; Skordos & Papafragou, 2016, a.o.)
The processing of weak modality

- Huette, Matlock, and Spivey (2010): audio-visual two-alternative forced-choice task to examine processing differences between *should* and *must*
 - Stimuli: *You must/should brush your teeth everyday; You must/should eat from a dirty plate* – agree or disagree?
 - Results:
 - no differences in reaction times
 - divergence in fixations to the target for *should*, but not for *must*
 - “These results suggest two mental models are simultaneously activated, entailing both agreement and disagreement with the statement in question”
Online experimental studies

- 2 MTurk studies: Truth Value Judgment Tasks, recording reaction time:
 - Study 1: alethic modals, asking simple math questions
 - Study 2: deontic modals, asking questions about a short text
Methods

- 45 participants for Study 1; 54 participants for Study 2
- 6 meaning conditions:
 - \Diamond (can)
 - $\neg\Diamond$ (cannot)
 - $\Diamond\neg$ (possibly not)
 - \Box (must)
 - $\neg\Box$ (need not)
 - $\Box\neg$ (must not)
Methods

- 45 participants for Study 1; 54 participants for Study 2
- 6 meaning conditions:
 - ♦ (can)
 - ¬♦ (cannot)
 - ♦¬ (possibly not)
 - □ (must)
 - ¬□ (need not)
 - □¬ (must not)
- each participant saw one of the following (6 meaning conditions, varying type of context, truth value, felicity):

<table>
<thead>
<tr>
<th>det</th>
<th>T, F</th>
<th>T, F</th>
<th>T, F</th>
<th>T, F</th>
</tr>
</thead>
<tbody>
<tr>
<td>indet</td>
<td>T, F</td>
<td>T, F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Methods

- 45 participants for Study 1; 54 participants for Study 2
- 6 meaning conditions:
 - ♦ (can)
 - ¬♦ (cannot)
 - ♦¬ (possibly not)
 - □ (must)
 - ¬□ (need not)
 - □¬ (must not)
- each participant saw one of the following (6 meaning conditions, varying type of context, truth value, felicity):

<table>
<thead>
<tr>
<th>det</th>
<th>Tinf, F</th>
<th>Tinf, F</th>
<th>T, F</th>
<th>T, F</th>
</tr>
</thead>
<tbody>
<tr>
<td>indet</td>
<td>T, F</td>
<td>T, F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

- excluded subjects that had accuracy at or below chance
- excluded responses with reaction time below 1sec and above 19sec (for Study 1), 15sec (for Study 2)
Methods

- **Modal lexemes used:**

<table>
<thead>
<tr>
<th>Study 1</th>
<th>Study 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>◊ can, possibly</td>
<td>can, allowed</td>
</tr>
<tr>
<td>¬◊ cannot</td>
<td>cannot, not allowed</td>
</tr>
<tr>
<td>◊¬ possibly not</td>
<td>allowed not, permitted not</td>
</tr>
<tr>
<td>□ must, have to, necessarily</td>
<td>must, needs, required</td>
</tr>
<tr>
<td>¬□ not have to, not necessarily</td>
<td>need not, not required</td>
</tr>
<tr>
<td>□¬ must not, necessarily not</td>
<td>must not, required not</td>
</tr>
</tbody>
</table>
Examples of target prompts

(1) \(x\) and \(y\) are positive integers, and \(x + y = 4\).
 Is this statement true or false:
 \(y\) is necessarily equal to 2.

(2) \(x\) and \(y\) are positive integers, and \(x + y = 3\).
 Is this statement true or false:
 \(y\) is not necessarily equal to 1.5.
Methods: Study 2

- Example of target prompt

At Institution X, students graduate only if they have passed The Secret Test.

This Test is offered once a year, and students can choose when to take the Secret Test, but there are certain requirements:
- In their first year, a student may take the Test if their GPA is above 3.0.
- In their second or third year, a student may take the Test if their GPA is above 2.0.
- Students must take the Test before the beginning of their fourth year.

This means that if by year 3, you have a GPA below 2.0, you can’t take the Secret Test so you automatically fail your degree.

These rules are strict; any attempt to cheat the system results in termination.

Lily is a third year.
Lily's GPA: 2.8

Is this statement true or false?
When the Secret Test is offered this year,
Lily is allowed to take it.

press C for TRUE, press M for FALSE
Results: Study 1

- No significant effect on accuracy
Results: Study 1

- No significant effect on accuracy
- No effect of context, truth value, felicity on accuracy or reaction time

Two-sample independent t-test: Longer reaction times for weak negated modals, compared to the rest.

Average reaction time by modal meaning: 15 / 41
Results: Study 1

- No significant effect on accuracy
- No effect of context, truth value, felicity on accuracy or reaction time
- Two-sample independent t-test: Longer reaction times for weak negated modals, compared to the rest

Average reaction time by modal meaning
Results: Study 1

- Controlling for lexical access and length:

<table>
<thead>
<tr>
<th></th>
<th>necessarily</th>
<th>not</th>
<th>not necessarily</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT (in sec)</td>
<td>4.320</td>
<td>4.968</td>
<td></td>
</tr>
</tbody>
</table>

\[p = .085166 \]

Not quite significant (but: small amount of data for these two conditions)
Results: Study 2

Reaction times by condition, for correct responses
(infelicitous removed)
Study 2 results: RT for lexical modals

Reaction times by condition, for correct responses for lexical modals (infelicitous removed)

- maximally controlling for lexical access and length
Study 2 results: accuracy

Accuracy rates per condition (infelicitous removed)
Main findings

- In both studies, weak negated expressions (¬□, ◊¬) elicit slower responses than strong negated expressions (□¬, ¬◊), and apparent lower accuracy rates.
Among [+neg] conditions, strength is the only factor differentiating between negated strong ($\square \neg$, $\neg \Diamond$) and negated weak ($\neg \square$, $\Diamond \neg$) conditions: both scope and modal item are controlled for.

- For both alethic and deontic modals, the hypothesis is partly confirmed: weak modals take longer to process than strong modals. What is the significance of negation?
Possibilities for why weakness matters only with negation:
- combined cognitive load
 - while there is higher processing cost for weak (as shown by Huette et al. (2010)), non-negated are at ceiling for reaction time
 - same, negation also has a cost (Feiman, Mody, Sanborn, & Carey, 2017; Nordmeyer & Frank, 2015, a.o.), but negated sentences are also at ceiling (seen in controls)
- only the combination of both makes a difference in reaction time
Discussion

- Possibilities for why weakness matters only with negation:
 - combined cognitive load
 - while there is higher processing cost for weak (as shown by Huette et al. (2010)), non-negated are at ceiling for reaction time
 - same, negation also has a cost (Feiman et al., 2017; Nordmeyer & Frank, 2015, a.o.), but negated sentences are also at ceiling (seen in controls)
 - only the combination of both makes a difference in reaction time
 - pragmatics:
 - as opposed to strong modals, weak negated and non-negated modals appear in the same contexts, since they are each other’s implicature. In uttering $\neg\Box p$ or $\Diamond \neg p$, there must be some expectation of $\Box p$. If it’s not there, one must accommodate.
Discussion

- Possibilities for why weakness matters only with negation:
 - combined cognitive load
 - while there is higher processing cost for weak (as shown by Huette et al. (2010)), non-negated are at ceiling for reaction time
 - same, negation also has a cost (Feiman et al., 2017; Nordmeyer & Frank, 2015, a.o.), but negated sentences are also at ceiling (seen in controls)
 - only the combination of both makes a difference in reaction time
 - pragmatics:
 - as opposed to strong modals, weak negated and non-negated modals appear in the same contexts, since they are each other’s implicature. In uttering $\neg \Box p$ or $\Diamond \neg p$, there must be some expectation of $\Box p$. If it’s not there, one must accommodate.
 - While the contexts, especially in Study 2, did allow this expectation to be there, the fact that ‘can’ was there also negated this expectation.
 - a follow-up: in the same context, compare “can leave” vs “don’t have to stay” (so expectations are constant)
Outline

1. Weak and strong modality

2. Experimental study: Processing weak and strong modality

3. Child corpus study: acquiring weak and strong functional modals

4. A look at the typology
Child corpus study

- Corpus study: 11 corpora containing spontaneous speech from preschool children and their input (from the CHILDES database); 5 French, 6 Spanish
Child corpus study

- Corpus study: 11 corpora containing spontaneous speech from preschool children and their input (from the CHILDES database); 5 French, 6 Spanish
- Coded sentences containing root modals and negation, for:
 - strength (target and intended)
 - force
 - presence of negation
Results: Binomial Tests for concurrent acquisition

- Strength: 2 out of 5 French children and 2 out of 5 Spanish children acquired strong forms before weak forms; the other children showed no significant results
Results: Binomial Tests for concurrent acquisition

- **Strength**: 2 out of 5 French children and 2 out of 5 Spanish children acquired strong forms before weak forms; the other children showed no significant results.

- **Force**: 2 out of 5 French children and 4 out of 5 Spanish children acquired existentials before universals; the other children showed no significant results.
Results: Binomial Tests for concurrent acquisition

- Strength: 2 out of 5 French children and 2 out of 5 Spanish children acquired strong forms before weak forms; the other children showed no significant results
- Force: 2 out of 5 French children and 4 out of 5 Spanish children acquired existentials before universals; the other children showed no significant results
- → several first uses were negated
Results: counts for each modal expression

<table>
<thead>
<tr>
<th></th>
<th>□</th>
<th>□¬</th>
<th>¬□</th>
<th>♦</th>
<th>¬♦</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to age 3</td>
<td>CHI</td>
<td>252</td>
<td>32</td>
<td>2</td>
<td>244</td>
</tr>
<tr>
<td></td>
<td>ADU</td>
<td>1876</td>
<td>265</td>
<td>78</td>
<td>1326</td>
</tr>
<tr>
<td>up to age 4</td>
<td>CHI</td>
<td>425</td>
<td>56</td>
<td>9</td>
<td>461</td>
</tr>
<tr>
<td></td>
<td>ADU</td>
<td>2425</td>
<td>330</td>
<td>113</td>
<td>1787</td>
</tr>
</tbody>
</table>

Table: Counts of French forms, by age and group and by meaning (cumulative)

<table>
<thead>
<tr>
<th></th>
<th>□</th>
<th>□¬</th>
<th>¬□</th>
<th>♦</th>
<th>¬♦</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to age 3</td>
<td>CHI</td>
<td>119</td>
<td>7</td>
<td>1</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>ADU</td>
<td>717</td>
<td>28</td>
<td>12</td>
<td>264</td>
</tr>
<tr>
<td>up to age 4</td>
<td>CHI</td>
<td>146</td>
<td>10</td>
<td>2</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>ADU</td>
<td>809</td>
<td>29</td>
<td>14</td>
<td>312</td>
</tr>
</tbody>
</table>

Table: Counts of Spanish forms, by age and group and by meaning (cumulative)
Results: comparing proportions

<table>
<thead>
<tr>
<th>comparing</th>
<th>French</th>
<th>Spanish</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p-values</td>
<td>CHI residuals</td>
</tr>
<tr>
<td></td>
<td>p = 0.001</td>
<td>(-1.95, +2.27)</td>
</tr>
<tr>
<td>¬□ ¬◊</td>
<td>p = 0.013</td>
<td>(-1.99, +0.94)</td>
</tr>
<tr>
<td>¬□ ◊</td>
<td>p = 0.013</td>
<td>(-2.73, +0.62)</td>
</tr>
<tr>
<td>¬□ □</td>
<td>p = 0.010</td>
<td>(-2.21, +0.43)</td>
</tr>
<tr>
<td>¬□ □¬</td>
<td>p = 0.025</td>
<td>(-1.76, +0.91)</td>
</tr>
<tr>
<td>◊ ¬◊</td>
<td>p = 0.084</td>
<td></td>
</tr>
<tr>
<td>□ ¬◊</td>
<td>p > 0.999</td>
<td></td>
</tr>
<tr>
<td>□ □¬</td>
<td>p = 0.590</td>
<td></td>
</tr>
<tr>
<td>□¬ ¬◊</td>
<td>p = 0.639</td>
<td></td>
</tr>
</tbody>
</table>

Aggregate results for χ^2 or Fisher exact tests comparing forms across children and adults
Results: comparing proportions

<table>
<thead>
<tr>
<th>comparing</th>
<th>French p-values</th>
<th>CHI residuals</th>
<th>Spanish p-values</th>
<th>CHI residuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ ◊</td>
<td>p = 0.001</td>
<td>(-1.95, +2.27)</td>
<td>p = 0.584</td>
<td></td>
</tr>
<tr>
<td>¬□ ¬◊</td>
<td>p = 0.013</td>
<td>(-1.99, +0.94)</td>
<td>p = 0.748</td>
<td></td>
</tr>
<tr>
<td>¬□ ◊</td>
<td>p = 0.013</td>
<td>(-2.73, +0.62)</td>
<td>p > 0.999</td>
<td></td>
</tr>
<tr>
<td>¬□ □◊</td>
<td>p = 0.010</td>
<td>(-2.21, +0.43)</td>
<td>p > 0.999</td>
<td></td>
</tr>
<tr>
<td>□ ◊ ¬◊</td>
<td>p = 0.025</td>
<td>(-1.76, +0.91)</td>
<td>p > 0.999</td>
<td></td>
</tr>
<tr>
<td>◊ ¬◊</td>
<td>p = 0.084</td>
<td></td>
<td>p = 0.013</td>
<td>(-1.71, +1.34)</td>
</tr>
<tr>
<td>□ ¬◊</td>
<td>p > 0.999</td>
<td></td>
<td>p = 0.008</td>
<td>(-1.44, +1.87)</td>
</tr>
<tr>
<td>□ □◊</td>
<td>p = 0.590</td>
<td></td>
<td>p = 0.332</td>
<td></td>
</tr>
<tr>
<td>□¬ ¬◊</td>
<td>p = 0.639</td>
<td></td>
<td>p > 0.999</td>
<td></td>
</tr>
</tbody>
</table>

Aggregate results for χ^2 or Fisher exact tests comparing forms across children and adults

1. non-negated existentials are preferred over non-negated universals (French)
Results: comparing proportions

<table>
<thead>
<tr>
<th>comparing</th>
<th>French p-values</th>
<th>CHI residuals</th>
<th>Spanish p-values</th>
<th>CHI residuals</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ ◊</td>
<td>$p = 0.001$</td>
<td>$(-1.95, +2.27)$</td>
<td>$p = 0.584$</td>
<td></td>
</tr>
<tr>
<td>¬□ ¬◊</td>
<td>$p = 0.013$</td>
<td>$(-1.99, +0.94)$</td>
<td>$p = 0.748$</td>
<td></td>
</tr>
<tr>
<td>¬□ ◊</td>
<td>$p = 0.013$</td>
<td>$(-2.73, +0.62)$</td>
<td>$p > 0.999$</td>
<td></td>
</tr>
<tr>
<td>¬□ □</td>
<td>$p = 0.010$</td>
<td>$(-2.21, +0.43)$</td>
<td>$p > 0.999$</td>
<td></td>
</tr>
<tr>
<td>¬□ □◊</td>
<td>$p = 0.025$</td>
<td>$(-1.76, +0.91)$</td>
<td>$p > 0.999$</td>
<td></td>
</tr>
<tr>
<td>◊ ¬◊</td>
<td>$p = 0.084$</td>
<td></td>
<td>$p = 0.013$</td>
<td>$(-1.71, +1.34)$</td>
</tr>
<tr>
<td>□ ¬◊</td>
<td>$p > 0.999$</td>
<td></td>
<td>$p = 0.008$</td>
<td>$(-1.44, +1.87)$</td>
</tr>
<tr>
<td>□ □◊</td>
<td>$p = 0.590$</td>
<td></td>
<td>$p = 0.332$</td>
<td></td>
</tr>
<tr>
<td>□¬ ¬◊</td>
<td>$p = 0.639$</td>
<td></td>
<td>$p > 0.999$</td>
<td></td>
</tr>
</tbody>
</table>

Aggregate results for χ^2 or Fisher exact tests comparing forms across children and adults

1. non-negated existentials are preferred over non-negated universals (French)

2. weak negated universals are dispreferred relative to all other forms (French)
Results: comparing proportions

<table>
<thead>
<tr>
<th>comparing</th>
<th>French</th>
<th></th>
<th></th>
<th>Spanish</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>p-values</td>
<td>CHI residuals</td>
<td>p-values</td>
<td>CHI residuals</td>
</tr>
<tr>
<td>□ ♦</td>
<td>p = 0.001</td>
<td>(-1.95, +2.27)</td>
<td>p = 0.584</td>
<td></td>
</tr>
<tr>
<td>¬□ ¬♦</td>
<td>p = 0.013</td>
<td>(-1.99, +0.94)</td>
<td>p = 0.748</td>
<td></td>
</tr>
<tr>
<td>¬□ ♦</td>
<td>p = 0.013</td>
<td>(-2.73, +0.62)</td>
<td>p > 0.999</td>
<td></td>
</tr>
<tr>
<td>¬□ □¬</td>
<td>p = 0.010</td>
<td>(-2.21, +0.43)</td>
<td>p > 0.999</td>
<td></td>
</tr>
<tr>
<td>¬□ □¬</td>
<td>p = 0.025</td>
<td>(-1.76, +0.91)</td>
<td>p > 0.999</td>
<td></td>
</tr>
<tr>
<td>♦ ¬◊</td>
<td>p = 0.084</td>
<td></td>
<td>p = 0.013</td>
<td>(-1.71, +1.34)</td>
</tr>
<tr>
<td>□ ¬◊</td>
<td>p > 0.999</td>
<td></td>
<td>p = 0.008</td>
<td>(-1.44, +1.87)</td>
</tr>
<tr>
<td>□ □¬</td>
<td>p = 0.590</td>
<td></td>
<td>p = 0.332</td>
<td></td>
</tr>
<tr>
<td>□¬ ¬◊</td>
<td>p = 0.639</td>
<td></td>
<td>p > 0.999</td>
<td></td>
</tr>
</tbody>
</table>

Aggregate results for χ^2 or Fisher exact tests comparing forms across children and adults

1. non-negated existentials are preferred over non-negated universals (French)
2. weak negated universals are dispreferred relative to all other forms (French)
3. negated existentials are preferred to non-negated forms (Spanish)
Results from corpus study by Dieuleveut et al.

<table>
<thead>
<tr>
<th></th>
<th>can</th>
<th>cannot</th>
<th>have to</th>
<th>not have to</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHI</td>
<td>8873</td>
<td>2617</td>
<td>350</td>
<td>7</td>
</tr>
<tr>
<td>ADU</td>
<td>1803</td>
<td>1906</td>
<td>2302</td>
<td>99</td>
</tr>
</tbody>
</table>

Table: Counts for English (12 child-mother pairs, age 2-3)

- Comparing child counts for pairs of forms, relative to their input:
 - *have to* vs. *not have to*: \(\chi^2 = 3.93; \ p = 0.0474; \) residuals: +0.34, -1.68 (lower child use of *not have to* relative to input)
 - *not have to* vs. *cannot*: \(\chi^2 = 53.94, \ p < 0.0001; \) residuals: -5.49, +4.6 (higher child use of *cannot*, even lower use of *not have to*, relative to input)
Discussion

- Evidence for a bias away from weak modal expressions:
 - acquisition of strong expressions before weak expressions
 - dispreference for weak negated universals (*don’t have to*) in French, relative to input
 - preference for negated over non-negated existentials in Spanish, relative to input

Table: Proportion of questions among non-negated existential utterances

- French: CHI 154/277 (55.60%), ADU 146/736 (19.84%)
- Spanish: CHI 5/51 (9.80%), ADU 83/337 (24.64%)

- These are often desire-satisfaction mechanisms, that don’t necessarily require reasoning about alternative world representations
Discussion

- Evidence for a bias away from weak modal expressions:
 - acquisition of strong expressions before weak expressions
 - dispreference for weak negated universals (*don’t have to*) in French, relative to input
 - preference for negated over non-negated existentials in Spanish, relative to input

- Post-hoc results:

<table>
<thead>
<tr>
<th></th>
<th>questions</th>
<th>total</th>
<th>percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>French</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHI</td>
<td>154</td>
<td>277</td>
<td>55.60%</td>
</tr>
<tr>
<td>ADU</td>
<td>146</td>
<td>736</td>
<td>19.84%</td>
</tr>
<tr>
<td>Spanish</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHI</td>
<td>5</td>
<td>51</td>
<td>9.80%</td>
</tr>
<tr>
<td>ADU</td>
<td>83</td>
<td>337</td>
<td>24.64%</td>
</tr>
</tbody>
</table>

Table: Proportion of questions among non-negated existential utterances

- In French, kids use *pouvoir* in questions for requesting or permission-asking. Why not the same in Spanish? (maybe: imperatives are less rude and can be used for requesting)
- These are often desire-satisfaction mechanisms, that don’t necessarily require reasoning about alternative world representations
Discussion

- Possible explanations for this bias:
 - these particular children’s usage patterns (so they would express ¬□ if wanted)
Possible explanations for this bias:

- these particular children’s usage patterns (so they would express ¬□ if wanted)
- weak is more difficult to produce than strong
Discussion

Previous theoretical and experimental evidence for a cost for weak modals:

▶ Children have trouble with indeterminacy, i.e. entertaining multiple representations at once (Ackerman, 1981; Acredolo & Horobin, 1987; ¨Ozt¨ urk & Papafragou, 2015)

▶ Existential quantification involves entertaining multiple representations at once by generating alternatives (at least in the nominal domain: Kratzer & Shimoyama, 2002, a.o.)

▶ “you may do X” has the alternative “you may do not X” or “you may do Y”, for any contextually relevant Y

▶ Children are notoriously bad at generating alternatives themselves up until 5-6 years old, at least for deriving scalar implicatures (Barner & Bachrach, 2010; Chierchia et al., 2001; Huang & Snedeker, 2009; Noveck, 2001; Papafragou, 2006; Skordos & Papafragou, 2016, a.o.)
Discussion

Previous theoretical and experimental evidence for a cost for weak modals:

▶ children have trouble with indeterminacy, i.e. entertaining multiple representations at once (Ackerman, 1981; Acredolo & Horobin, 1987; Öztürk & Papafragou, 2015)

▶ existential quantification involves entertaining multiple representations at once by generating alternatives (at least in the nominal domain: Kratzer & Shimoyama, 2002, a.o.)

▶ "you may do X" has the alternative "you may do not X" or "you may do Y", for any contextually relevant Y

▶ Children are notoriously bad at generating alternatives themselves up until 5-6 years old, at least for deriving scalar implicatures (Barner & Bachrach, 2010; Chierchia et al., 2001; Huang & Snedeker, 2009; Noveck, 2001; Papafragou, 2006; Skordos & Papafragou, 2016, a.o.)
Discussion

Previous theoretical and experimental evidence for a cost for weak modals:

▶ children have trouble with indeterminacy, i.e. entertaining multiple representations at once (Ackerman, 1981; Acredolo & Horobin, 1987; Öztürk & Papafragou, 2015)

▶ existential quantification involves entertaining multiple representations at once by generating alternatives (at least in the nominal domain: Kratzer & Shimoyama, 2002, a.o.)

▶ ”you may do X” has the alternative ”you may do not X” or ”you may do Y”, for any contextually relevant Y
Discussion

Previous theoretical and experimental evidence for a cost for weak modals:

- children have trouble with indeterminacy, i.e. entertaining multiple representations at once (Ackerman, 1981; Acredolo & Horobin, 1987; Öztürk & Papafragou, 2015)

- existential quantification involves entertaining multiple representations at once by generating alternatives (at least in the nominal domain: Kratzer & Shimoyama, 2002, a.o.)
 - ”you may do X” has the alternative ”you may do not X” or ”you may do Y”, for any contextually relevant Y

- Children are notoriously bad at generating alternatives themselves up until 5-6 years old, at least for deriving scalar implicatures (Barner & Bachrach, 2010; Chierchia et al., 2001; Huang & Snedeker, 2009; Noveck, 2001; Papafragou, 2006; Skordos & Papafragou, 2016, a.o.)
Outline

1. Weak and strong modality

2. Experimental study: Processing weak and strong modality

3. Child corpus study: acquiring weak and strong functional modals

4. A look at the typology
The sparseness of weak functional modal forms

- The $\Diamond > \neg$ scope with functional modals and sentential negation is at most very rare
 - Iatridou and Zeijlstra (2010) make this observation
 - Among the 76 languages that De Haan (1997) describes, most have universal modals that scope above and below negation, but only one – Guyanese Creole – appears to have an existential modal scoping above sentential negation

- In Siona (M. Bruil, p.c, and from my own fieldwork), there appears to be only one functional modal, and it is a necessity modal. Its combination with negation is a prohibition
The sparseness of weak functional modal forms

- Rates of negated weak modals appear low, based on the adult data collected in the above corpus studies.
- \(\neg \) \(\bigcirc \) scope appears to be much less frequent than the other functional modal + sentential negation combinations.

<table>
<thead>
<tr>
<th>Language</th>
<th>out of all modals</th>
<th>out of negated modals</th>
</tr>
</thead>
<tbody>
<tr>
<td>French</td>
<td>2.22%</td>
<td>13.08%</td>
</tr>
<tr>
<td>Spanish</td>
<td>0.88%</td>
<td>2.99%</td>
</tr>
<tr>
<td>English</td>
<td>1.62%</td>
<td>4.94%</td>
</tr>
</tbody>
</table>

Table: Frequency of \(\neg \) (<) \(\bigcirc \) from child directed speech.

- Note also that the rates of use of the weak \(\neg \) \(\bigcirc \) scope vary across these languages: could unnecessary modals be unnecessary?
A hypothesis for this sparseness

- Children are known to drive language change: could their bias away from weak modals affect the inventory and behavior of functional modals?
- e.g. there may be expressions with too high processing costs to be learnable
A hypothesis for the typological gap

<table>
<thead>
<tr>
<th></th>
<th>possibility</th>
<th>necessity</th>
</tr>
</thead>
<tbody>
<tr>
<td>weak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>◊: can</td>
<td>NA</td>
</tr>
<tr>
<td>-</td>
<td>◊¬: ?</td>
<td>¬□: not have to</td>
</tr>
<tr>
<td>strong</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>NA</td>
<td>□: must</td>
</tr>
<tr>
<td>-</td>
<td>¬◊: can't</td>
<td>□¬: mustn't</td>
</tr>
</tbody>
</table>
A hypothesis for the typological gap

<table>
<thead>
<tr>
<th></th>
<th>possibility</th>
<th>necessity</th>
</tr>
</thead>
<tbody>
<tr>
<td>weak</td>
<td>+</td>
<td>¬</td>
</tr>
<tr>
<td></td>
<td>◊: can</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>¬◊: ?</td>
<td>¬□: not have to</td>
</tr>
<tr>
<td>strong</td>
<td>+</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>¬◊: can't</td>
<td>□¬: mustn't</td>
</tr>
</tbody>
</table>

- **Base syntactic order of root modals and negation:**

 Neg > Modal
A hypothesis for the typological gap

<table>
<thead>
<tr>
<th></th>
<th>possibility</th>
<th>necessity</th>
</tr>
</thead>
<tbody>
<tr>
<td>weak</td>
<td>+</td>
<td>◊: can</td>
</tr>
<tr>
<td></td>
<td>−</td>
<td>◊¬: ?</td>
</tr>
<tr>
<td>strong</td>
<td>+</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>−</td>
<td>¬◊: can't</td>
</tr>
</tbody>
</table>

- Base syntactic order of root modals and negation:
 Neg > Modal

- Hypothesis: Modal > Neg can be derived only when the resulting meaning is easier to process than that of the base order
A hypothesis for the typological gap

<table>
<thead>
<tr>
<th></th>
<th>possibility</th>
<th>necessity</th>
</tr>
</thead>
<tbody>
<tr>
<td>weak</td>
<td>+ \diamond: can</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>\neg $\neg\diamond$: ?</td>
<td>$\neg\Box$: not have to</td>
</tr>
<tr>
<td>strong</td>
<td>+ NA</td>
<td>\Box: must</td>
</tr>
<tr>
<td></td>
<td>$\neg\neg\diamond$: can't</td>
<td>$\neg\Box$: mustn't</td>
</tr>
</tbody>
</table>

- Base syntactic order of root modals and negation:

 Neg $>$ Modal

- Hypothesis: Modal $>$ Neg can be derived only when the resulting meaning is easier to process than that of the base order

 - Neg $>$ must (weak) harder than must $>$ Neg (strong)

 → derived scopal configuration is possible
A hypothesis for the typological gap

<table>
<thead>
<tr>
<th></th>
<th>possibility</th>
<th>necessity</th>
</tr>
</thead>
<tbody>
<tr>
<td>weak</td>
<td>+</td>
<td>◊: can</td>
</tr>
<tr>
<td></td>
<td>−</td>
<td>◊¬: ?</td>
</tr>
<tr>
<td>strong</td>
<td>+</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>−</td>
<td>¬◊: can’t</td>
</tr>
</tbody>
</table>

- Base syntactic order of root modals and negation:
 Neg > Modal

- Hypothesis: Modal > Neg can be derived only when the resulting meaning is easier to process than that of the base order
 - Neg > must (weak) harder than must > Neg (strong) → derived scopal configuration is possible
 - Neg > can (strong) easier than can > Neg (weak) → derived scopal configuration is not possible
Conclusion

There are converging sources of evidence for a higher processing cost for weak modal expressions relative to strong ones:

- Direct measures:
 - reaction times in TVJT (for negated modals)
 - accuracy rates in TVJT (for negated modals)
 - eye movements in agreement/disagreement task (for non-negated modals) (Huette et al., 2010)

- As consequences of this processing cost:
 - later start in production (for all weak vs strong modals)
 - lower rates of negated weak modals at ages 2-4

- This high processing cost for weak modals may be a source for their typological sparseness
Thank you!

