HW1: Shabani - QM2 (Due Thu Feb 21st)

1. Assume the Hamiltonian of a quantum two-level system in form of $\hat{H} = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix}$. The Hamiltonian is Hermitian with real H_{11} and H_{22} such that $H_{11} > H_{22}$. **a.** Show that you can write \hat{H} in the form of $\hat{H} = \hat{H}_0 + \hat{H}_1$ where \hat{H}_0 is matrix with a global energy shift and \hat{H}_1 is in form of $\hat{H}_1 = \begin{pmatrix} \epsilon & \Delta - i\tilde{\Delta} \\ \Delta + i\tilde{\Delta} & -\epsilon \end{pmatrix}$

- **b**. Find eigenvalues of \hat{H}_0 and \hat{H}_1 .
- **c.** Express \hat{H}_1 in terms of Pauli matrices.

d. What is the relationship between eigenstates of \hat{H}_0 ($|\varphi+\rangle$, $|\varphi-\rangle$) and \hat{H}_1 ($|\psi+\rangle$, $|\psi-\rangle$). Hint: first solve this for spin $\frac{1}{2}$ system assuming $\hat{H}_1 = -\gamma\hbar B.S$ where γ is gyromagnetic ratio and $B = (B_x, B_y, B_z)^T$ is the magnetic field vector. Then try to see what is the relationship of $|\varphi+\rangle$, $|\varphi-\rangle$ to $|\psi+\rangle$, $|\psi-\rangle$ on the Bloch sphere.

2. A quantum system is said to possess a 'symmetry' if the Hamiltonian operator, H, is invariant under the associated transformation. In other words, if H' = H, where $H' = U^{\dagger}HU$.

a. Show that H' = H is equivalent to [H, U] = 0.

b. If a system possesses 'translational symmetry' what operator is a constant of motion?

3. Consider a particle described by the Hamiltonian $\hat{H} = \frac{\hat{P}^2}{2m} + \hat{V}(x)$ where $V(x) = \frac{1}{2}m\omega^2 x^2 + mgx$. Show that $X' = U^{\dagger}XU = X + d$. (Remember $U|x\rangle = |x - d\rangle$).

a. Solve for d and E_0 such that $H' = U^{\dagger}HU$ satisfies $\widehat{H'} = E_0 + \frac{\widehat{P}^2}{2m} + \frac{1}{2}m\omega^2 x^2$

b. Let $|\varphi_n\rangle$ be eigenstate of *H* and $|\varphi'_n\rangle$ be eigenstate of *H'*. What is the relationship between φ_n and φ'_n ? What is the relationship between E_n and E'_n ?