Persuasion with Rational Inattention

Alex Bloedel Ilya Segal
Stanford University

February 22, 2019

2019 Sloan-Nomis Workshop (NYU)
Motivation

“In an information-rich world, most of the cost of information is the cost incurred by the recipient. It is not enough to know how much it costs to produce and transmit information; we must also know how much it costs, in terms of scarce attention, to receive it.”

– Herbert Simon (1971)

Leading Examples:

- Info management in organizations: Give the boss “all the details” or just an “executive summary”?
- Advertising in the “attention economy”: How to attract consumers’ money and eyeballs?
Communication is a fundamental economic “transaction”
- Sender has info, Receiver has decision-making power

Receiver’s limited attention is a primary “transaction cost”
- Receiver **privately bears** a cost to process Sender’s messages \(\Rightarrow\) **moral hazard**

Information disclosure plays a **dual role**
- **Persuasion**: misaligned preferences over actions
- **Attention manipulation**: misaligned preferences over information/attention
Communication is a fundamental economic “transaction”
- Sender has info, Receiver has decision-making power

Receiver’s limited attention is a primary “transaction cost”
- Receiver **privately bears** a cost to process Sender’s messages \implies moral hazard

Information disclosure plays a **dual role**
- **Persuasion**: misaligned preferences over **actions**
- **Attention manipulation**: misaligned preferences over **information/attention**
Summary of Results

Question: What is optimal form of communication in an information-rich world?

1. How does this depend on preference (mis)alignment?
2. ... on Sender’s commitment power? (Bayesian persuasion vs. cheap talk)
3. ... on richness of underlying uncertainty?

Main Insights:

1. **Aligned:** simple messages to focus Receiver’s attention \implies minimize mistakes

 Misaligned: detailed messages to exploit Receiver’s inattention \implies induce mistakes

2. **Both:** provide more info in order to attract Receiver’s attention

3. Even under aligned preferences, commitment has value b/c Sender will exaggerate

4. Under aligned preferences, attention manipulation driven by multi-tasking aspect of Receiver’s attention choice
Summary of Results

- **Question:** What is optimal form of communication in an information-rich world?
 - How does this depend on preference (mis)alignment?
 - ... on Sender’s commitment power? (Bayesian persuasion vs. cheap talk)
 - ... on richness of underlying uncertainty?

- **Main Insights:**
 - **Aligned:** simple messages to focus Receiver’s attention \(\implies\) minimize mistakes
 - **Misaligned:** detailed messages to exploit Receiver’s inattention \(\implies\) induce mistakes
 - **Both:** provide more info in order to attract Receiver’s attention

- Even under aligned preferences, commitment has value b/c Sender will exaggerate

- Under aligned preferences, attention manipulation driven by multi-tasking aspect of Receiver’s attention choice
Summary of Results

Question: What is optimal form of communication in an information-rich world?

- How does this depend on preference (mis)alignment?
- ... on Sender’s commitment power? (Bayesian persuasion vs. cheap talk)
- ... on richness of underlying uncertainty?

Main Insights:

1. **Aligned:** simple messages to focus Receiver’s attention \implies minimize mistakes

 Misaligned: detailed messages to exploit Receiver’s inattention \implies induce mistakes

 Both: provide more info in order to attract Receiver’s attention

2. *Even under aligned preferences*, commitment has value b/c Sender will exaggerate

3. *Under aligned preferences*, attention manipulation driven by multi-tasking aspect of Receiver’s attention choice
Summary of Results

Question: What is optimal form of communication in an information-rich world?

1. How does this depend on preference (mis)alignment?
2. ...on Sender’s commitment power? (Bayesian persuasion vs. cheap talk)
3. ...on richness of underlying uncertainty?

Main Insights:

1. **Aligned**: simple messages to focus Receiver’s attention \implies minimize mistakes
 - **Misaligned**: detailed messages to exploit Receiver’s inattention \implies induce mistakes
 - **Both**: provide more info in order to attract Receiver’s attention
2. *Even under aligned preferences*, commitment has value b/c Sender will exaggerate
3. *Under aligned preferences*, attention manipulation driven by multi-tasking aspect of Receiver’s attention
Summary of Results

Question: What is optimal form of communication in an information-rich world?

1. How does this depend on preference (mis)alignment?
2. ... on Sender’s commitment power? (Bayesian persuasion vs. cheap talk)
3. ... on richness of underlying uncertainty?

Main Insights:

1. **Aligned:** simple messages to **focus** Receiver’s attention \implies **minimize** mistakes
 - **Misaligned:** detailed messages to **exploit** Receiver’s inattention \implies **induce** mistakes
 - **Both:** provide more info in order to **attract** Receiver’s attention

2. **Even under aligned preferences,** commitment has value b/c Sender will **exaggerate**

3. **Under aligned preferences,** attention manipulation driven by **multi-tasking** aspect of Receiver’s attention choice
Related Literature

- **Bayesian persuasion:** Rayo-Segal (2010), Kamenica-Gentzkow (2011), Dworczak-Martini (2018)

- **Rational inattention:**
 - **Single agent:** Matejka-McKay (2015), Caplin-Dean (2015), Caplin-Dean-Leahy (2018a,b)

- **Costly communication:** Dewatripont-Tirole (2005), Dessein-Galeotti-Santos (2016)
Baseline Model (with commitment)

1. State of nature $S \sim G \in \Delta(S)$, where $S = [s, \bar{s}]$

2. **Sender** commits to persuasion strategy (\mathcal{X}, π)
 - $x \in \mathcal{X}$ is a signal
 - $\pi : S \rightarrow \Delta(\mathcal{X})$

3. **Receiver** chooses an attention strategy (\mathcal{M}, μ) — given (\mathcal{X}, π), before signal realized
 - $m \in \mathcal{M}$ is a perception
 - $\mu : \mathcal{X} \rightarrow \Delta(\mathcal{M})$
 - **Moral hazard:** attention cost — function of both (\mathcal{X}, π) and (\mathcal{M}, μ)

4. Given perception $m \in \mathcal{M}$ (and induced posterior re: state), Receiver chooses action $a \in \{0, 1\}$

5. Material payoffs realize
 - Receiver has utility $u_R(a, s) := 1_{a=1} \cdot s$
 - Sender has affine utility $u_S(a, s) := \alpha \cdot 1_{a=1} + \beta \cdot u_R(a, s)$
Baseline Model (with commitment)

1. State of nature $S \sim G \in \Delta(S)$, where $S = [s, \bar{s}]$

2. **Sender** commits to persuasion strategy (X, π)
 - $x \in X$ is a signal
 - $\pi : S \to \Delta(X)$

3. **Receiver** chooses an attention strategy (M, μ) — given (X, π), before signal realized
 - $m \in M$ is a perception
 - $\mu : X \to \Delta(M)$
 - **Moral hazard**: attention cost — function of both (X, π) and (M, μ)

4. Given perception $m \in M$ (and induced posterior re: state), Receiver chooses action $a \in \{0, 1\}$

5. Material payoffs realize
 - Receiver has utility $u_R(a, s) := 1_{a=1} \cdot s$
 - Sender has affine utility $u_S(a, s) := \alpha \cdot 1_{a=1} + \beta \cdot u_R(a, s)$
Baseline Model (with commitment)

1. **State of nature** $S \sim G \in \Delta(S)$, where $S = [s, \bar{s}]$

2. **Sender** commits to persuasion strategy (\mathcal{X}, π)
 - $x \in \mathcal{X}$ is a signal
 - $\pi : S \to \Delta(\mathcal{X})$

3. **Receiver** chooses an attention strategy (\mathcal{M}, μ) — given (\mathcal{X}, π), before signal realized
 - $m \in \mathcal{M}$ is a perception
 - $\mu : \mathcal{X} \to \Delta(\mathcal{M})$
 - **Moral hazard**: attention cost — function of both (\mathcal{X}, π) and (\mathcal{M}, μ)

4. Given perception $m \in \mathcal{M}$ (and induced posterior re: state), Receiver chooses action $a \in \{0, 1\}$

5. Material payoffs realize
 - Receiver has utility $u_R(a, s) := 1_{a=1} \cdot s$
 - Sender has affine utility $u_S(a, s) := \alpha \cdot 1_{a=1} + \beta \cdot u_R(a, s)$
Baseline Model (with commitment)

1. State of nature $S \sim G \in \Delta(S)$, where $S = [s, \bar{s}]$

2. **Sender** commits to persuasion strategy (\mathcal{X}, π)
 - $x \in \mathcal{X}$ is a signal
 - $\pi : S \rightarrow \Delta(\mathcal{X})$

3. **Receiver** chooses an attention strategy (\mathcal{M}, μ) — given (\mathcal{X}, π), before signal realized
 - $m \in \mathcal{M}$ is a perception
 - $\mu : \mathcal{X} \rightarrow \Delta(\mathcal{M})$
 - **Moral hazard:** attention cost — function of both (\mathcal{X}, π) and (\mathcal{M}, μ)

4. Given perception $m \in \mathcal{M}$ (and induced posterior re: state), Receiver chooses action $a \in \{0, 1\}$

5. Material payoffs realize
 - Receiver has utility $u_R(a, s) := 1_{a=1} \cdot s$
 - Sender has affine utility $u_S(a, s) := \alpha \cdot 1_{a=1} + \beta \cdot u_R(a, s)$
Baseline Model (with commitment)

1. State of nature $S \sim G \in \Delta(S)$, where $S = [s, \bar{s}]$

2. **Sender** commits to persuasion strategy (\mathcal{X}, π)
 - $x \in \mathcal{X}$ is a signal
 - $\pi : S \rightarrow \Delta(\mathcal{X})$

3. **Receiver** chooses an attention strategy (\mathcal{M}, μ) — given (\mathcal{X}, π), before signal realized
 - $m \in \mathcal{M}$ is a perception
 - $\mu : \mathcal{X} \rightarrow \Delta(\mathcal{M})$
 - **Moral hazard**: attention cost — function of both (\mathcal{X}, π) and (\mathcal{M}, μ)

4. Given perception $m \in \mathcal{M}$ (and induced posterior re: state), Receiver chooses action $a \in \{0, 1\}$

5. Material payoffs realize
 - Receiver has utility $u_R(a, s) := 1_{a=1} \cdot s$
 - Sender has affine utility $u_S(a, s) := \alpha \cdot 1_{a=1} + \beta \cdot u_R(a, s)$
Assumption: RI Cost Function

- \(S \rightarrow X \rightarrow M \) forms Markov chain
- Attention cost \(\propto \textbf{mutual information} \) between \(X \) and \(M \):

 \[
 I(X; M) = I(S; M) + I(X; M|S)
 \]

 direct learning about state \hspace{1cm} \text{tracking additional noise in signal}

- Sender chooses “state space” and “prior” for Receiver’s RI problem

Lemma (“Revelation Principle”)

\(\text{It is WLOG to identify signals with their induced posterior means about state, i.e.,} \)

\[
\mathcal{X} := S \\
x := \mathbb{E}[s \mid x]
\]
Assumption: RI Cost Function

- $S \rightarrow X \rightarrow M$ forms Markov chain
- Attention cost \propto mutual information between X and M:

$$I(X; M) = I(S; M) + I(X; M|S)$$

direct learning about state
tracking additional noise in signal

- Sender chooses "state space" and "prior" for Receiver's RI problem

Lemma ("Revelation Principle")

It is WLOG to identify signals with their induced posterior means about state, i.e.,

$$\mathcal{X} := S$$
$$x := \mathbb{E}[s \mid x]$$
Stochastic Choice (for fixed persuasion strategy)

1. Receiver makes mistakes: $0 < p(x) < 1$

2. **Local Attention Intensity** is single-peaked & smoothed: \[
\frac{\partial p(x)}{\partial x} \propto \mathbb{V}(a | x) > 0
\]
Aligned Preferences

- Same material preferences: $u_S(a, s) = u_R(a, s) = 1_{a=1} \cdot s$

- Leading Example: Should you give the boss “all the details” or just an “executive summary”?

- Competing intuitions:
 1. **Fully disclose** the state to (i) give Receiver “largest feasible set” and (ii) attract his attention
 2. Make **direct recommendation** to make “processing” easier for Receiver
Aligned Preferences: Continuous State

Key feature: simple messages focus Receiver’s attention on the “right aspects” and minimize mistakes
Aligned Preferences: Benchmarks

General model with state space S and action space A compact metric, utility functions continuous.

1. Receiver faces **pure capacity constraint**: $I(X; M) \leq C$
 - **Fact:** Full disclosure always optimal.
 - “Proof:” Receiver has free disposal of information, so give him largest feasible set
 - **Intuition:** attention manipulation hinges on extensive margin of Receiver’s attention choice

2. State is binary: $|S| = 2$
 - **Theorem (partial):** If $|S| = 2$, then full disclosure is always optimal. If $|S| \geq 3$, there are examples with two actions s.t. full disclosure strictly suboptimal.
 - **Intuition:** attention manipulation hinges on multi-tasking aspect of Receiver’s attention choice
Aligned Preferences: Benchmarks

General model with state space S and action space A compact metric, utility functions continuous.

1. Receiver faces **pure capacity constraint**: $I(X; M) \leq C$
 - **Fact**: Full disclosure always optimal.
 - **“Proof”:** Receiver has free disposal of information, so give him largest feasible set
 - **Intuition**: attention manipulation hinges on extensive margin of Receiver’s attention choice

2. State is **binary**: $|S| = 2$
 - **Theorem (partial)**: If $|S| = 2$, then full disclosure is always optimal. If $|S| \geq 3$, there are examples with two actions s.t. full disclosure strictly suboptimal.
 - **Intuition**: attention manipulation hinges on multi-tasking aspect of Receiver’s attention choice
Remarks and Next Steps

- Not in talk:
 - Proof ideas — mostly based on LP & first-order approach
 - Misaligned preferences
 - Limited commitment/cheap talk communication
 - Comparative statics

- Work in progress:
 1. Multiple Senders who compete for Receiver’s attention (joint with Dong Wei)
 2. Dynamic information disclosure (no restriction to one-shot communication)

- Open questions:
 1. Further extensions and applications of model?
 2. Message space design (beyond mutual info cost)?
 3. Mechanism/market design for RI agents (multiple Receivers, other instruments)?
Remarks and Next Steps

- Not in talk:
 - Proof ideas — mostly based on LP & first-order approach
 - Misaligned preferences
 - Limited commitment/cheap talk communication
 - Comparative statics

- Work in progress:
 1. Multiple Senders who compete for Receiver’s attention (joint with Dong Wei)
 2. Dynamic information disclosure (no restriction to one-shot communication)

- Open questions:
 1. Further extensions and applications of model?
 2. Message space design (beyond mutual info cost)?
 3. Mechanism/market design for RI agents (multiple Receivers, other instruments)?
Remarks and Next Steps

Not in talk:

- Proof ideas — mostly based on LP & first-order approach
- Misaligned preferences
- Limited commitment/cheap talk communication
- Comparative statics

Work in progress:

1. Multiple Senders who compete for Receiver’s attention (joint with Dong Wei)
2. Dynamic information disclosure (no restriction to one-shot communication)

Open questions:

1. Further extensions and applications of model?
2. Message space design (beyond mutual info cost)?
3. Mechanism/market design for RI agents (multiple Receivers, other instruments)?
Appendix
State-Independent Preferences

- Sender cares only about probability of action: $u_S(a, s) = 1_{a=1}$

- Leading Example: profit-maximizing seller advertises a good with fixed price (e.g., Amazon’s product recommendations)
State-Independent Preferences: Binary State (1/2)

Key feature #1: provide more info than free-attention solution to attract Receiver’s attention

Figure: Optimum when attention is free (left) and when it is costly (right).
Key feature #2: Receiver’s entire best-response curve is endogenous to Sender’s persuasion strategy.

Figure: Optimum against fixed SCR (left) and incorporating IC constraint (right).
Key feature: detailed messages to exploit Receiver’s inattention and induce mistakes.

Figure: Optimum when attention is free (left) and when it is costly (right).
Aligned Preferences: No Commitment (cheap talk)

- Sender can, at most, truthfully convey the sign of the state
 - Endogenous restriction to direct recommendation
 - **Driving force:** incentive to exaggerate always hindrance to communication