AS A SCAL-DOWN REPRESENTATION OF REALITY,
The Visual Variables of Jacqueline Barton

The Visual Variables or Caricographic Symbols

The visual variables are the components that make up a design or a visualization. They consist of shape, size, color, texture, orientation, and value.

Shape refers to the size of shapes, color refers to the color of shapes, texture refers to the texture of shapes, orientation refers to the orientation of shapes, size refers to the size of shapes, and value refers to the value of shapes.

These variables are used to encode information in a graphical representation. By using different combinations of these variables, designers can effectively communicate information to the viewer.
The Visual Wonders of Jacques Béguin

The illustrations of Jacques Béguin, which are strongly influenced by the painter’s passion for the visual and the decorative, are an excellent example of the fusion of art and science. His works often feature complex patterns and designs that are both aesthetically pleasing and visually stimulating. The use of color, line, and shape is masterfully executed, creating a sense of depth and movement within the compositions.

In this section, we explore some of Béguin’s most celebrated works, focusing on the interplay of visual elements and the psychological impact they have on the viewer. We also examine the techniques he employed to create such a rich and diverse portfolio of images.

Béguin’s approach to visual representation is characterized by a strong emphasis on the relationship between art and science. His works often reflect the influence of various scientific disciplines, including mathematics, biology, and physics. This interdisciplinary approach allows Béguin to create images that are not only visually striking but also intellectually stimulating.

In the following pages, we present a selection of Béguin’s works, accompanied by detailed annotations and analyses. These images are not only intended to be enjoyed for their aesthetic qualities but also to provoke thought and discussion about the role of art in our understanding of the world.
amount only one of four categories of point phenomena, the map

`Comprehension symbols should evoke the viewer's information`

```
Figure 3.2, Comparison of point symbols in one, two, and three
dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
```

```
Figure 3.3, Comparison of point symbols in one, two, and three

dimensions. The four fundamental principles to remember in
the design of a three-dimensional map are level, volume,
and orientation. A true and accurate perspective, however,
The Visual Variables of Icons and Graphical Symbols

The symbols comprise of signs of any portrait symbols of the language, the visual layout and their meaning in size and shape. In addition to their size and shape, visual symbols also play a crucial role in conveying meaning. These symbols can be used to represent any of the six elements of a portrait figure: line, shape, color, texture, and gestural motion. In contrast to other symbols, graphical symbols have no inherent meaning. Instead, they serve to facilitate the communication of an idea or concept.

In Figure 3.1, the symbols can be arranged in a manner to highlight or emphasize certain aspects of the data. For example, a map of the United States might use different symbols to represent various states. Open and filled symbols can be used to denote different categories, such as open symbols for one category and filled symbols for another. This can make it easier to distinguish between different groups.
Contrast:
The relationship of the human ability to perceive contrast is perhaps the single most important factor in the effective design of visual displays. The human visual system is highly sensitive to changes in brightness and contrast, and it is this sensitivity that allows us to see differences between objects in the environment.

The Visual Variables of Perception:
- **Blue vs. Green**: The contrast between blue and green is high, as they are opposite colors on the color spectrum. This makes them easily distinguishable.
- **Red vs. Black**: The contrast between red and black is high due to the high intensity of red and the lack of light reflected by black surfaces.
- **High vs. Low Contrast**: High contrast images are those with a large difference in brightness between the light and dark areas, making them more visually striking.

Contrast in Graphics:
Contrast is a fundamental aspect of visual design. It helps to draw attention to important elements and create a sense of depth and dimension. In graphic design, contrast is used to create visual hierarchy, guide the viewer's eye, and enhance the overall impact of the design.

Not all traditional symbols are interpretable in use, and when...
The Visual Variables of Image Semantics

Flow Links:

Isolines

Theorem: An important internal variable for flow links (X) is the

CONCLUSION

that a continuous path between adjacent points, where the

concentration is shown, is a potential internal variable for flow links. A

symbol that employs concentration as a

symbol with multiple links

may be used to represent a map or map outline. The

symbol should be composed of a grid, a grid line, and a

grid point. The grid point should be placed at the point of

the grid line that is closest to the symbol. The grid line should

be drawn with a solid line, and the grid point should be

drawn with a dashed line. The symbols should be

drawn with a thin line, and the grid points should be

drawn with a thick line.

The diagram shows the flow links between the different areas of

the map. The flow links are represented by the arrows, which

indicate the direction of the flow. The flow links are

connected by the grid lines, which represent the

boundaries of the areas. The grid points represent

the locations where the flow links start and end. The

symbols represent the concentration of the flow links in

the different areas.

Another form of attention measure is the visuallytraining

method: Visual variables and Cartographic Symbols

Figure 3.8: An isometric map showing the concentration of flow links.

The concentration of flow links is shown using symbols that

represent different levels of concentration. The symbols

are placed at the points where the concentration is highest.

The concentration is represented by the color of the

symbols, with darker colors indicating higher concentrations.

The symbols are placed on a grid, with each symbol

representing a specific area of concentration. The grid

lines help to define the boundaries of the areas,

and the symbols help to indicate the concentration

levels within those areas.

The diagram also shows the flow links between the different

areas, with arrows indicating the direction of the flow.

The flow links are connected by the grid lines, which

represent the boundaries of the areas. The symbols

represent the concentration of the flow links in

the different areas, with darker colors indicating higher

concentrations.

Another form of attention measure is the visually-training

method: Visual variables and Cartographic Symbols

Figure 3.9: A map showing the concentration of flow links.

The concentration of flow links is shown using symbols that

represent different levels of concentration. The symbols

are placed at the points where the concentration is highest.

The concentration is represented by the color of the

symbols, with darker colors indicating higher concentrations.

The symbols are placed on a grid, with each symbol

representing a specific area of concentration. The grid

lines help to define the boundaries of the areas,

and the symbols help to indicate the concentration

levels within those areas.

The diagram also shows the flow links between the different

areas, with arrows indicating the direction of the flow.

The flow links are connected by the grid lines, which

represent the boundaries of the areas. The symbols

represent the concentration of the flow links in

the different areas, with darker colors indicating higher

concentrations.
The Visual Variables of Design Depth
second order with care such simple transformations as

scale up or down, flip horizontally, rotate 90 degrees, or other.

commercial, industrial, and educational contexts.

are the most important functional differences among these.

The input would provide a more modern counter to extant, or crop-up.

a number of patterns, with perhaps counterparts of those to

and higher-resolution visual patterns unsuitable for

result. On a map of land use, for instance, symbols showing

areas forms. First, use similar patterns for similar categories and

A few general principles can guide the selection of

under the same general guidelines for creating categories.

water but a photographic quality of these graphic elements.

reversed. This means in full patterns, some can have a range of

The pattern may differ than common designs on the graphs

because of the many versions of useful ones.

of the graphics as a variety of

patterns are easily unusable for small

patterns at the top.

Vincent van Gogh, a map with a few "country scenes", pairs with a

Also, various symbols are visible in the upper right.

Coarse-grained symbols are also unusable for small

in terms of a large part of a map that we could see in one of the

visually more abstract symbols which would especially be a good

order for a variety of reasons. Consider the 19th-century map of

This means that a few symbols that differ in scale. If decision

examine a losses in minimizing the perception of detail.

In addition, many images of conceptual and real-world things,

The most common symbols of conceptual and real-world things,

showing different kinds of boxes. To construct qualitative maps

and different expositions are also important for maps

represent the core of these patterns. To construct qualitative maps

Visual Variables and Cartographic Symbols
Visual Variables and Cartographic Symbolism

From and Function in Cartographic Representation

The most common map in exposure to cartography is the simple places of features with which the viewer might be acquainted. locating a location map is essential to understanding a map's purpose. This section explores how symbols and their use, in addition to representing points, lines, and areas, can be used to add meaning to a map. The section also discusses the relationship between map symbols and the real-world phenomena they represent, offering a deeper understanding of how maps convey information and how viewers interpret them.

107 New York State Thruway

Lorenzo State Historic Site

Figure 3.10. Location map for the Lorenzo State Historic Site in Connecticut.

The section on the map for the location of the map viewer focuses on the cartographic communication of symbols for the section exploration of cartographic symbols. The section explores how symbols and their use, in addition to representing points, lines, and areas, can be used to add meaning to a map. The section also discusses the relationship between map symbols and the real-world phenomena they represent, offering a deeper understanding of how maps convey information and how viewers interpret them.

107 New York State Thruway

Lorenzo State Historic Site

Figure 3.10. Location map for the Lorenzo State Historic Site in Connecticut.