Meso Scale Study of Rapid Penetration into Granular Media

Mehdi Omidvar
February 27, 2015
Meso scale study of rapid penetration in granular media

- Motivation and background
- Experimental methods
- Macro scale results
- Refractive index matching - transparent soils
- Digital image correlation
- Meso scale results
- Summary and Conclusions
• **Motivation**
 - Military applications (fortress design, underground targets, etc.)
 - Subsurface investigation
 - Planetary impact
 - Oil and gas industry
 - Physics of granular media

• **Some open questions:**
 - How does the penetrator energy dissipate as it penetrates soil
 - What is the role of the soil density, saturation, etc.?
 - What are the main soil-penetrator interaction mechanisms?
• Phenomenology of rapid penetration

Equation of motion: \(-m \frac{dv}{dt} = \alpha v^2 + \beta v + f(z) \)

- Inertial term:
- Viscous term: \(f(v) \)
- Frictional bearing resistance: Depth dependent? \(f(z) = ? \)

\(dm = \rho dv = \rho Av dt \rightarrow dp = dm v = \rho Av^2 dt \)

\[F = -\frac{dp}{dt} = -\rho Av^2 \]
• **Approach:**
 • Subscale tests
 • Measure projectile penetration time history \(p(t) \)
 • Record projectile velocity
 • \[a(t) = \frac{d^2 p(t)}{dt^2} \]

• **Two methods used:**
 • High-speed imaging
 • Photonic Doppler velocimetry
High speed imaging:
- Use long rod as projectile
- Track markers on projectile using high-speed camera
- Derive penetration time history

Four projectile shapes used:
- Conical, hemispherical, blunt rod, and sphere
• **Experimental setup**
 - Camera: 4 MPx @1.6 kHz
 - Imaging frequency: 50 kHz, 5 us exposure
 - 1.25 kW tungsten halogen light
 - Impact velocity ~ 80 m/s

Time lapse sample frames during penetration
• **Limitations:**
 - Higher velocities difficult to image with required resolution
 - Differentiation amplified noise

• **Photonic Doppler velocimetry (PDV):**
 - Directly obtain velocity (no differentiation)
 - Extremely high resolution for $v(t)$
 - Large depth of field
 - Much higher velocities possible – 300 m/s used in our research
PDV measurement principle:

- Coherent light source is reflected from a moving surface
- Reflected light wave has a Doppler shifted frequency, f_D, compared to original wave frequency, f_0
 \[f_b = |f_D - f_0| \]
- Frequency shift relates to velocity of moving object, $v(t)$
 \[f_b(t) = 2 \left(\frac{v(t)}{c} \right) f_0 = 2 \left(\frac{v(t)}{\lambda_0} \right) \]
 \[v(t) = \frac{1}{2} \lambda_0 f_b(t) \]
 (c and λ_0 are speed and length of coherent light wave)
Rapid Penetration in Granular Media

- **PDV experimental setup:**

 Schematics of PDV setup

 Experimental setup used for penetration in soils

2/27/15
• Typical PDV measurements:
Test matrix:
- 80 tests performed
- Four soil types
- Dry and saturated
- Four projectile shapes
- Loose and dense packing
- Velocities of 80-300 m/s

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Relative Packing</th>
<th>Projectile</th>
<th>Saturation</th>
<th>Test ID</th>
<th>Impact Velocity (m/s)</th>
<th>Target Dry Density (g/cm³)</th>
<th>Packing Fraction</th>
<th># of repeats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ottawa Sand</td>
<td>Loosely Packed</td>
<td>Sphere</td>
<td>Dry</td>
<td>OS-LP-S-D</td>
<td>297.4</td>
<td>1.387</td>
<td>0.67</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hemispherical</td>
<td>Dry</td>
<td>OS-LP-HR-D</td>
<td>83.9</td>
<td>1.670</td>
<td>0.59</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rod</td>
<td>Wet</td>
<td>OS-LP-HR-W</td>
<td>77.3</td>
<td>1.660</td>
<td>0.60</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blunt Rod</td>
<td>Dry</td>
<td>OS-LP-BR-D</td>
<td>74.1</td>
<td>1.640</td>
<td>0.62</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conical Rod</td>
<td>Dry</td>
<td>OS-LP-CR-D</td>
<td>76.8</td>
<td>1.680</td>
<td>0.58</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hemisphere Rod</td>
<td>Wet</td>
<td>OS-DP-HR-D</td>
<td>79.7</td>
<td>1.830</td>
<td>0.45</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rod</td>
<td>Wet</td>
<td>OS-DP-HR-W</td>
<td>73.9</td>
<td>1.830</td>
<td>0.45</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Densely Packed</td>
<td>Sphere</td>
<td>Wet</td>
<td>CC-LP-S-D</td>
<td>303.0</td>
<td>1.187</td>
<td>0.85</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hemispherical</td>
<td>Dry</td>
<td>CC-LP-HR-D</td>
<td>83.7</td>
<td>1.030</td>
<td>1.14</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rod</td>
<td>Dry</td>
<td>CC-LP-HR-W</td>
<td>70.1</td>
<td>1.460</td>
<td>0.82</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blunt Rod</td>
<td>Dry</td>
<td>CC-LP-BR-D</td>
<td>76.2</td>
<td>1.640</td>
<td>0.62</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conical Rod</td>
<td>Wet</td>
<td>CC-LP-CR-D</td>
<td>72.9</td>
<td>1.580</td>
<td>0.73</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hemisphere Rod</td>
<td>Dry</td>
<td>CA-DP-HR-D</td>
<td>76.2</td>
<td>1.850</td>
<td>0.48</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rod</td>
<td>Wet</td>
<td>CA-DP-HR-W</td>
<td>79.3</td>
<td>1.730</td>
<td>0.51</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blunt Rod</td>
<td>Dry</td>
<td>CA-DP-BR-D</td>
<td>78.0</td>
<td>1.810</td>
<td>0.51</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conical Rod</td>
<td>Dry</td>
<td>CA-DP-CR-D</td>
<td>77.2</td>
<td>1.790</td>
<td>0.53</td>
<td>2</td>
</tr>
<tr>
<td>Fused Quartz</td>
<td>Loosely Packed</td>
<td>Sphere</td>
<td>Dry</td>
<td>FQ-LP-S-D</td>
<td>303.0</td>
<td>1.187</td>
<td>0.85</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hemispherical</td>
<td>Dry</td>
<td>FQ-LP-HR-D</td>
<td>83.7</td>
<td>1.030</td>
<td>1.14</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rod</td>
<td>Dry</td>
<td>FQ-DP-S-D</td>
<td>302.5</td>
<td>1.298</td>
<td>0.69</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Densely Packed</td>
<td>Sphere</td>
<td>Dry</td>
<td>FQ-DP-HR-D</td>
<td>71.2</td>
<td>1.170</td>
<td>0.86</td>
<td>4</td>
</tr>
<tr>
<td>Crushed Coral</td>
<td>Loosely Packed</td>
<td>Hemisphere Rod</td>
<td>Wet</td>
<td>CA-LP-HR-W</td>
<td>82.0</td>
<td>1.600</td>
<td>0.71</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rod</td>
<td>Wet</td>
<td>CA-LP-HR-W</td>
<td>60.2</td>
<td>1.580</td>
<td>0.73</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Densely Packed</td>
<td>Blunt Rod</td>
<td>Dry</td>
<td>CA-LP-BR-D</td>
<td>67.0</td>
<td>1.610</td>
<td>0.70</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blunt Rod</td>
<td>Dry</td>
<td>CA-LP-CR-D</td>
<td>72.9</td>
<td>1.580</td>
<td>0.73</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conical Rod</td>
<td>Wet</td>
<td>CA-DP-HR-D</td>
<td>76.2</td>
<td>1.850</td>
<td>0.48</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blunt Rod</td>
<td>Dry</td>
<td>CA-DP-HR-W</td>
<td>79.3</td>
<td>1.730</td>
<td>0.58</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Aragonite</td>
<td>Blunt Rod</td>
<td>Dry</td>
<td>CA-DP-BR-D</td>
<td>78.0</td>
<td>1.810</td>
<td>0.51</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blunt Rod</td>
<td>Dry</td>
<td>CA-DP-CR-D</td>
<td>77.2</td>
<td>1.790</td>
<td>0.53</td>
<td>2</td>
</tr>
</tbody>
</table>

OS: Ottawa sand
CC: Crushed coral
FQ: Crushed fused quartz
CA: Aragonite
• **Test results:**
 - Transitions in velocity time history observed, particularly in dense sand
 - Acceleration: Initial impact deceleration, followed by steady state penetration, and final increase in deceleration
 - Oscillations in acceleration due to force chain formation and breakdown
• **Effect of nose shape:**
 - Significant in Ottawa sand
 - More important in dense sand
 - Conical nose penetrates farthest
 - Hemisphere and blunt are comparable
 - Nose not significant in crushable sand

Fig 12: Effect of nose shape on penetration into dense Ottawa sand: (a) Penetration time history, (b) velocity vs. penetration, and (c) velocity vs. time (dashed lines represent raw data).

Fig 13: Effect of nose shape on penetration into dense Aragonite sand: (a) Penetration time history, (b) velocity vs. penetration, and (c) velocity vs. time (dashed lines represent raw data).
• **Effect of nose shape:**
 - Crushed soil forms false nose, thereby reducing role of nose shape

![SEM image of false nose](image_url)

SEM image of false nose

Projectile recovered after test in aragonite
Effect of saturation:

- Ottawa sand: not significant for loose sand – eliminates transition in dense sand
Effect of saturation:

- Crushed coral: crushing reduces role of saturation
• Supersonic penetration:
 • Another transition observed at approximately 80 m/s
• **High velocity transition:**

 • Trail of comminuted sand observed along projectile trajectory

 • Crushing diminishes below approximately 80 m/s
• **Low velocity transition:**
 - Frictional resistance taking over inertial resistance as velocity decays
 - Quasi static penetration tests confirm role of frictional resistance (depth dependent)
• **General emerging picture:**

 • Two distinct transitions found

 • First transition: crushing/non crushing

 • Second transition: inertial/frictional

 • **Ongoing:** analytical description according to modified phenomenology

![Diagram showing velocity regime during projectile penetration in granular media.](image)
• We measured forces and deceleration

What about soil deformation and soil-projectile interactions?

Can we look inside the soil??
• We measured forces and deceleration

What about soil deformation and soil-projectile interactions?

Can we look inside the soil??

YES WE CAN!!!
Refractive index matching - transparent soils

- Transparent soil = transparent granular material + index matching pore fluid

- Granular materials:
 - Silica gel (beads/crushed)
 - Amorphous silica powder
 - Crushed fused quartz
 - Glass beads

- Pore fluids:
 - Mineral oil blends
 - Water based solutions (NaI, Sucrose, etc.)
Diagnostic techniques

- Transparent soil - laser illumination

Experimental setup

Typical speckle pattern
Diagnostic techniques

- Transparent soil - embedded plane technique
- **Experimental setup**
 - High speed camera
 - Electro-pneumatic accelerator
 - Pressurized gas source
 - Lighting
 - Transparent soil model
 - Mobile workstation
• **Time lapse of penetration event**

 • $V_0=14$ m/s, Loose sample

 • Image acquisition rate: 6 kHz

 • Playback: 15 fps

 • Oil buffer prevents isolates air blast effect

• **How to analyze images??**
Digital image correlation

Step 1 - Acquire images; discretize into subsets

Step 2 - Calculate ZNSSD for each interrogation window (Eq. 2)

Step 3 - Locate correlation peak for each subset

Step 4 - Obtain displacement of each subset

ZNSSD(m,n) = \left[\frac{\sum_{i=1}^{M} \sum_{j=1}^{N} [f(i,j) - \bar{f}]^2}{\sqrt{\sum_{i=1}^{M} \sum_{j=1}^{N} f(i,j) - \bar{f}}^2} \right] - \left[\frac{\sum_{i=1}^{M} \sum_{j=1}^{N} [g(i+m,j+n) - \bar{g}]^2}{\sqrt{\sum_{i=1}^{M} \sum_{j=1}^{N} g(i+m,j+n) - \bar{g}}^2} \right]
Results: velocity field
Results: examples of shear and volumetric strain field
Results: examples of shear and volumetric strain field
Results: comparison of quasi static and dynamic penetration

Fig 18: Comparison of shear strain increments for quasi static and dynamic penetration of blunt nose projectile, shown at 2D, 4D, 6D, and 8D penetration depths.
Summary of findings:

- Transition zones in velocity time history related to changes in penetration mechanism
- High velocity transition: role of particle crushing
- Low velocity transition: role of frictional resistance
- Effect of density, saturation, and nose shape identified
- Velocity field obtained, and zone of influence determined
- Kinematics of penetration described in terms of shear and volumetric strains
Questions?