Convolutional Networks for Image Processing (Part II)

Yao Wang
Tandon School of Engineering, New York University
Many contents from Sundeep Rangan:
https://github.com/sdrangan/introml/blob/master/sequence.md
Outline (Part I)

• Supervised learning: General concepts
• Neural network architecture
 – From single perceptron to multi-layer perceptrons
• Convolutional network architecture
 – Why using convolution and many layers
 – Multichannel convolution
 – Pooling
• Deep networks
• Model training
 – Loss functions
 – Stochastic gradient descent: general concept
 – Data Preprocessing and Regularization
• Training, validation and testing and cross validation
• Demo: training a ConvNet classifier
Outline (Part II)

- Neural Nets and Conv Nets and Model Training (Review)
 - Gradient calculation
 - Some important extensions of conv. layers
 - Popular classification models and transfer learning
Outline (Part III)

- Image to image autoencoder
- Semantic Segmentation using Multiresolution Autoencoder
- Object detection and classification
- Instance segmentation
Two-Layer Neural Net for Multiple Outputs

- Hidden layer: \(z_H = W_H x + b_H, \quad u_H = g_{act}(z_H) \)
- Output layer: \(z_O = W_O u_H + b_O \)
- Response map: \(\hat{y} = u_O = g_{out}(z_O) \)
Example Conv. Network

- Alex Net
- Each convolutional layer has:
 - 2D convolution
 - Activation (eg. ReLU)
 - Pooling or sub-sampling

Training with Gradient Descent

• Given training data: \((x_i, y_i), i = 1, \ldots, N\)
• Learn parameters: \(\theta = (W_H, b_H, W_o, b_o)\)
 – Weights and biases for hidden and output layers
 – \(W_H\) are filter kernels in conv. layer
• Neural network training (like all training): Minimize loss function
 \[
 \hat{\theta} = \arg \min_{\theta} L(\theta), \quad L(\theta) = \sum_{i=1}^{N} L_i(\theta, x_i, y_i)
 \]
 – \(L_i(\theta, x_i, y_i) = \text{loss on sample } i \text{ for parameter } \theta\)
• Standard gradient descent:
 \[
 \theta^{k+1} = \theta^k - \alpha \nabla L(\theta^k) = \theta^k - \alpha \sum_{i=1}^{N} \nabla L_i(\theta^k, x_i, y_i)
 \]
 – Each iteration requires computing \(N\) loss functions and gradients
 – But, gradient computation is expensive when data size \(N\) large
Stochastic Gradient Descent

- In each step:
 - Select random small “mini-batch”
 - Evaluate gradient on mini-batch

- For $t = 1$ to N_{steps}
 - Select random mini-batch $I \subset \{1, ..., N\}$
 - Compute gradient approximation:
 \[g^t = \frac{1}{|I|} \sum_{i \in I} \nabla L(x_i, y_i, \theta) \]
 - Update parameters:
 \[\theta^{t+1} = \theta^t - \alpha^t g^t \]
Loss Function: Regression

• Regression case:
 – $y_i = \text{target variable for sample } i$
 – Typically continuous valued

• Output layer:
 – $\hat{y}_i = z_{0i} = \text{estimate of } y_i$

• Loss function: Use L2 loss

\[L(\theta) = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 \]

• For vector $y_i = (y_{i1}, ..., y_{iK})$, use vector L2 loss

\[L(\theta) = \sum_{i=1}^{N} \sum_{j=1}^{K} (y_{ik} - \hat{y}_{i,k})^2 \]
Loss Function: Binary Classification

- **Binary classification:**
 - Sample: \(x_i \) with label \(y_i = \{0,1\} = \text{class label} \),
 - Predicted output: \(\hat{y}_i = P(y_i = 1|x_i, \theta); \ 1 - \hat{y}_i = P(y_i = 0|x_i, \theta) \),
 - Output given by sigmoid on \(z_{0,i} \) : \(\hat{y}_i = \frac{1}{1+e^{-z_{0,i}}} \)

- **Objective:** maximize the likelihood (probability of \(y_i \) given \(x_i \) for all samples, assuming independence among samples)
 - \(P(y|X, \theta) = \prod_{i=1}^{N} P(y_i|x_i, \theta) \)

- **Maximizing the likelihood = minimizing negative log likelihood:**
 \[
 L(\theta) = -\sum_{i=1}^{N} \ln P(y_i|x_i, \theta) \\
 = -\sum_{i=1}^{N} y_i \ln \hat{y}_i + (1 - y_i) \ln (1 - \hat{y}_i) \\
 \text{activate when } y_i=1 \quad \text{activate when } y_i=0
 \]

- Called the **binary cross-entropy**
Loss Function: Multi-Class Classification

- Use **one-hot-encoding** to describe the label y_i

 $$y_i = (y_{i1}, ..., y_{iK}), \quad y_{ik} = \begin{cases} 1 & y_i = k \\ 0 & y_i \neq k \end{cases} \quad k = 1, ..., K$$

- **Output:** $\hat{y}_i = (\hat{y}_{i1}, ..., \hat{y}_{iK}); \quad \hat{y}_{i,k} = P(y_i = k|x_i, \theta)$
 - Output given by **softmax** on $z_{O,i}$: $\hat{y}_{i,k} = \frac{e^{z_{O,ik}}}{\sum_{l} e^{z_{O,il}}}$

- **Negative log-likelihood** given by:

 $$L(\theta) = -\sum_{i} \ln P(y_i = k|x_i, \theta) = -\sum_{i} \sum_{k=1}^{K} y_{ik} \ln \hat{y}_{i,k}$$

 - Called the **categorical cross-entropy**
How to compute gradients?

• For two-layer neural net: $\theta = (W_H, b_H, W_o, b_o)$
• Gradient is computed with respect to each parameter in each batch of M samples:

$$L(\theta) = \sum_{i=1}^{M} L_i(\theta, x_i, y_i) \quad \nabla L(\theta) = \sum_{i=1}^{M} \nabla L_i(\theta, x_i, y_i)$$

$$\nabla L_i(\theta) = [\nabla_{W_H} L_i(\theta), \nabla_{b_H} L_i(\theta), \nabla_{W_o} L_i(\theta), \nabla_{b_o} L_i(\theta)]$$

• Gradient descent is performed on each parameter:

$$W_H \leftarrow W_H - \alpha \nabla_{W_H} L(\theta),$$
$$b_H \leftarrow b_H - \alpha \nabla_{b_H} L(\theta),$$
$$\ldots$$

• How to compute $\nabla_{W_H} L_i(\theta), \nabla_{b_H} L_i(\theta)$, etc.?

• W_H, b_H, etc. are vectors and more generally tensors!

• Variables x_i, z_i, u_i, \hat{y}_i are also tensors!
Outline (Part II)

- Neural Nets and Conv Nets and Model Training (Review)
- Gradient calculation
- Some important extensions of conv. layers
- Popular classification models and transfer learning
Gradient Calculation

- Tensor definition
- Tensor gradients
- Tensor gradient chain rule
- Backpropagation
- Forward and backward pass
What is a Tensor?

- A multi-dimensional array
- Examples:
 - 2D: A grayscale image [height x width]
 - 3D: A color image [height x width x rgb]
 - 4D: A collection of images [height x width x rgb x image number]
- Like numpy ndarray
- Basic unit in tensorflow
- Rank or order = Number of dimensions
 - Note: Rank has different meaning in linear algebra
Indexing Tensors

• Suppose X is a tensor of order N
• Index with a multi-index $X[i_1, \ldots, i_N]$
 – May also use subscript: X_{i_1,\ldots,i_N}

• Example: Suppose $X =$ collection of images [height x width x rgb x image number]
 – $X[100,150,1,30] =$ pixel (100,150) for color channel 1 (green) on image 30

• If $i_1 \in \{0, \ldots, d_1 - 1\}, i_2 \in \{0, \ldots, d_2 - 1\}, \ldots$ then total number of elements $= d_1 d_2 \ldots d_N$
Tensors and Neural Networks

• Need to be consistent with indexing

• For a single input x:
 – Input x: vector of dimension d
 – Hidden layer: z_H, u_H: vectors of dimension N_H
 – Outputs: z_O: dimension K

• A batch of inputs with M samples:
 – Input x: Matrix of dimension $M \times d$
 – Hidden layer: z_H, u_H: vectors of dimension $M \times N_H$
 – Outputs: z_O: dimension $M \times K$

• Can generalize to other shapes of input
Gradient for Tensor Inputs & Outputs

• How do we consider general tensor inputs and outputs?
 • General setting: $\mathbf{y} = f(\mathbf{x})$
 - \mathbf{x} is a tensor of order N, \mathbf{y} is a tensor of order M
 • Gradient tensor: A tensor of order $N + M$

\[
\left[\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} \right]_{i_1,\ldots,i_M,j_1,\ldots,j_N} = \frac{\partial f_{i_1,\ldots,i_M}(\mathbf{x})}{\partial x_{j_1,\ldots,j_N}}
\]

 - Tensor has the derivative of every output with respect to every input.

• Ex: \mathbf{x} has shape (50,30), \mathbf{y} has shape (10,20,40)
 - $\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}}$ has shape (10,20,40,50,30)
 - $10(20)(40)(50)(30) = 1.2(10)^7$ elements
Gradient Examples 1 and 2

- **Example 1:** \(f(w) = (w_1w_2, w_1^2 + w_3^3) \)
 - 2 outputs, 3 inputs.
 - Gradient tensor is \(2 \times 3 \)
 \[
 \frac{\partial f(w)}{\partial w} = \begin{bmatrix}
 w_2 & w_1 & 0 \\
 2w_1 & 0 & 3w_3^2
 \end{bmatrix}
 \]

- **Example 2:** \(z = f(w) = Aw, \ A \) is \(M \times N \)
 - \(M \) outputs, \(N \) inputs: \(z_i = \sum_{j=1}^{N} A_{ij}w_j \)
 - Gradient components: \(\frac{\partial z_i}{\partial w_j} = A_{ij} \)
Computation Graph & Forward Pass

- Neural network loss function can be computed via a computation graph
- Sequence of operations starting from measured data and parameters
- Loss function computed via a forward pass in the computation graph
 - $z_{H,i} = W_H x_i + b_H$
 - $u_{H,i} = g_{act}(z_{H,i})$
 - $z_{O,i} = W_O u_{H,i} + b_O$
 - $\hat{y}_i = g_{out}(z_{O,i})$
 - $L = \sum_i L_i(\hat{y}_i, y_i)$
Chain Rule

• How do we compute gradient?
• Consider a three node computation graph:
 – $y = h(x)$, $z = g(y)$
 – So $z = f(x) = g(h(x))$
 – What is $\frac{\partial z}{\partial x}$?
• If variables were scalars, we could compute gradients via chain rule:

$$\frac{\partial z}{\partial x} = \frac{\partial f(x)}{\partial x} = \frac{\partial g(y)}{\partial y} \frac{\partial h(x)}{\partial x}$$

• What happens for tensors?
Tensor Chain Rule

- Consider Tensor case:
 - \(x\) has shape \((n_1, \ldots, n_N)\),
 - \(y\) has shape \((m_1, \ldots, m_M)\)
 - \(z\) has shape \((r_1, \ldots, r_R)\)

- First, compute gradient tensors between input and output of each node:
 - \(\frac{\partial g(y)}{\partial y}\) has shape \((r_1, \ldots, r_R, m_1, \ldots, m_M)\)
 - \(\frac{\partial h(x)}{\partial x}\) has shape \((m_1, \ldots, m_M, n_1, \ldots, n_N)\)

- Next, apply tensor chain rule:

\[
\frac{\partial z}{\partial x} = \frac{\partial z}{\partial y} \frac{\partial y}{\partial x} = \sum_{k_1=1}^{m_1} \cdots \sum_{k_M=1}^{m_M} \frac{\partial g_{i_1,\ldots,i_R}(y)}{\partial y_{k_1,\ldots,k_M}} \frac{\partial h_{k_1,\ldots,k_M}(x)}{\partial x_{j_1,\ldots,j_N}}
\]

\[
\frac{\partial z}{\partial x} = \frac{\partial f(x)}{\partial x} = \left\{ \frac{\partial g(y)}{\partial y}, \frac{\partial h(x)}{\partial x} \right\}
\]

Sum over indices of \(y\)
Tensor Chain Rule Summary

• It is all about keeping track of indices!
• Step 1. Decide on some indexing
 - \(x_{j_1,...,j_N}, y_{k_1,...,k_M}, z_{i_1,...,i_R} \)
• Step 2. Compute all partial derivatives
 \[
 \frac{\partial g_{i_1,...,i_R}(y)}{\partial y_{k_1,...,k_M}} \quad \text{and} \quad \frac{\partial h_{k_1,...,k_M}(x)}{\partial x_{j_1,...,j_N}}
 \]
• Step 3. Use tensor chain rule
 \[
 \frac{\partial z_{i_1,...,i_R}}{\partial x_{j_1,...,j_N}} = \frac{\partial f_{i_1,...,i_R}(x)}{\partial x_{j_1,...,j_N}} = \sum_{k_1=1}^{m_1} \ldots \sum_{k_M=1}^{m_M} \frac{\partial g_{i_1,...,i_R}(y)}{\partial y_{k_1,...,k_M}} \frac{\partial h_{k_1,...,k_M}(x)}{\partial x_{j_1,...,j_N}}
 \]
• Sometimes write with tensor inner product
 \[
 \frac{\partial z}{\partial x} = \frac{\partial f(x)}{\partial x} = \langle \frac{\partial g(y)}{\partial y}, \frac{\partial h(x)}{\partial x} \rangle
 \]
Gradients on a Computation Graph

- **Backpropagation**: Compute gradients backwards
 - Use tensor dot products and chain rule
- **First compute all derivatives of all the variables**
 - \(\frac{\partial L}{\partial z_O} = \langle \frac{\partial L}{\partial \hat{y}}, \frac{\partial \hat{y}}{\partial z_O} \rangle \)
 - \(\frac{\partial L}{\partial u_H} = \langle \frac{\partial L}{\partial z_O}, \frac{\partial z_O}{\partial u_H} \rangle \)
 - \(\frac{\partial L}{\partial z_H} = \langle \frac{\partial L}{\partial u_H}, \frac{\partial u_H}{\partial z_H} \rangle \)
 - \((\frac{\partial \hat{y}}{\partial z_O} \text{ and } \frac{\partial u_H}{\partial z_H} \text{ is element wise})\)
- **Then compute gradient of parameters**:
 - \(\frac{\partial L}{\partial W_O} = \langle \frac{\partial L}{\partial z_O}, \frac{\partial z_O}{\partial W_O} \rangle \)
 - \(\frac{\partial L}{\partial b_O} = \langle \frac{\partial L}{\partial z_O}, \frac{\partial z_O}{\partial b_O} \rangle \)
 - \(\frac{\partial L}{\partial W_H} = \langle \frac{\partial L}{\partial z_H}, \frac{\partial z_H}{\partial W_H} \rangle \)
 - \(\frac{\partial L}{\partial b_H} = \langle \frac{\partial L}{\partial z_H}, \frac{\partial z_H}{\partial b_H} \rangle \)
Example: Last layer of a Binary Classifier

- How to compute $\frac{\partial L}{\partial W_O}, \frac{\partial L}{\partial b_O}$?

$$L(\theta) = -\sum_{i=1}^{N} y_i \ln \hat{y}_i + (1 - y_i) \ln (1 - \hat{y}_i)$$

$$\hat{y}_i = \frac{1}{1 + e^{-z_{O,i}}}; \quad z_O = W_O u_H + b_O$$

This part could be convolutional layers
Example: Last layer of a Binary Classifier

- Go through on the board
Indexing Multi-Layer Networks

- Similar to two-layer NNs
 - But must keep track of layers
- Consider batch of image inputs:
 - \(X[i, j, k, n] \),
 (sample,row,col,channel)
- Input tensor at layer \(\ell \):
 - \(U^\ell[i, j, k, n] \) for convolutional layer
 - \(U^\ell[i, n] \) for fully connected layer
- Output tensor from linear transform:
 - \(Z^\ell[i, j, k, n] \) or \(Z^\ell[i, n] \)
- Output tensor after activation / pooling:
 - \(U^{\ell+1}[i, j, k, n] \) or \(U^{\ell+1}[i, n] \)
Back-Propagation in Convolutional Layers

- Convolutional layer in forward path
 \[Z^\ell = W^\ell \ast U^\ell + b^\ell \]
- During back-propagation:
 - Obtain gradient tensor from upstream layers \(\frac{\partial J}{\partial Z^\ell} \)
 - Need to compute downstream gradients:
 \[\frac{\partial J}{\partial W^\ell}, \frac{\partial J}{\partial b^\ell}, \frac{\partial J}{\partial U^\ell} \]
Gradient With Respect to Filter Weights

- Write convolution as:
 \[Z[i_1, i_2, m] = \sum_{k_1=0}^{K_1-1} \sum_{k_2=0}^{K_2-1} \sum_{n=0}^{N_{in}-1} W[k_1, k_2, n, m] U[i_1 + k_1, i_2 + k_2, n] + b[m] \]

 - Drop layer index \(\ell \) and sample index \(i \)

- Gradient wrt filter weights:
 \[\frac{\partial Z[i_1, i_2, m]}{\partial W[k_1, k_2, n, m]} = U[i_1 + k_1, i_2 + k_2, n] \]

 - Note that the same filter is used for all pixels, need to sum gradients
 \[\frac{\partial Z[i_1, i_2, m]}{\partial W[k_1, k_2, n, m]} \]
 for all \(i_1, i_2 \):
 \[\frac{\partial J}{\partial W[k_1, k_2, n, m]} = \sum_{i_1=1}^{N_1} \sum_{i_2=1}^{N_2} \frac{\partial Z[i_1, i_2, m]}{\partial W[k_1, k_2, n, m]} \frac{\partial J}{\partial Z[i_1, i_2, m]} = \sum_{i_1=1}^{N_1} \sum_{i_2=1}^{N_2} U[i_1 + k_1, i_2 + k_2, n] \frac{\partial J}{\partial Z[i_1, i_2, m]} \]

- Gradient wrt weights can be computed via convolution
 - Convolve input \(U \) with gradient tensor \(\frac{\partial J}{\partial Z[i_1, i_2, m]} \)

- Similar computations for gradients with respect to \(\frac{\partial J}{\partial b} \)
 - Homework!
Backpropagation: layer i

- Layer i has two inputs (during training)
 \[
 x_{i-1} \quad \frac{\partial C}{\partial x_i}
 \]

- For layer i, we need the derivatives:
 \[
 \frac{\partial F_i(x_{i-1}, w_i)}{\partial x_{i-1}} \quad \frac{\partial F_i(x_{i-1}, w_i)}{\partial w_i}
 \]

- We compute the outputs
 \[
 x_i = F_i(x_{i-1}, w_i)
 \]
 \[
 \frac{\partial C}{\partial x_{i-1}} = \frac{\partial C}{\partial x_i} \cdot \frac{\partial F_i(x_{i-1}, w_i)}{\partial x_{i-1}}
 \]

- The weight update equation is:
 \[
 \frac{\partial C}{\partial w_i} = \frac{\partial C}{\partial x_i} \cdot \frac{\partial F_i(x_{i-1}, w_i)}{\partial w_i}
 \]
 \[
 w_i^{k+1} \leftarrow w_i^k + \eta \frac{\partial E}{\partial w_i}
 \]
 (sum over all training examples to get E)

From Fergus: https://cs.nyu.edu/~fergus/teaching/vision/2_neural_nets.pdf
Backpropagation: summary

- Forward pass: For each training example. Compute the outputs for all layers:
 \[x_i = F_i(x_{i-1}, w_i) \]

- Backwards pass: compute cost derivatives iteratively from top to bottom:
 \[\frac{\partial C}{\partial x_{i-1}} = \frac{\partial C}{\partial x_i} \cdot \frac{\partial F_i(x_{i-1}, w_i)}{\partial x_{i-1}} \]

- Compute gradients and update weights.

From Fergus: https://cs.nyu.edu/~fergus/teaching/vision/2_neural_nets.pdf
Outline (Part II)

- Neural Nets and Conv Nets and Model Training (Review)
- Gradient calculation
- Some important extensions of conv. layers
- Popular classification models and transfer learning
Residual Connections (ResNET)

- Really, really deep convnets don’t train well
 - Gradient of final loss does not propagate back to earlier layers
- Key idea: introduce “pass through” into each layer for back propagation

Figure 5. A deeper residual function F for ImageNet. Left: a building block (on 56×56 feature maps) as in Fig. 3 for ResNet-34. Right: a “bottleneck” building block for ResNet-50/101/152.

Some Important Extensions

- Residual connections
- Dense connections
- Dilated convolution
Benefit of residual connection

W/o residual layer: deeper networks perform worse even for the training data.
W residual layer: deeper networks perform better!

Using shortcut 2 is theoretically optimal

Demystifying ResNet
https://arxiv.org/abs/1611.01186
Revolution of Depth

Case Studies

<table>
<thead>
<tr>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 weight layers</td>
<td>19 weight layers</td>
</tr>
</tbody>
</table>

- conv3-64
- conv3-64
- conv3-128
- conv3-128
- conv3-256
- conv3-256
- conv3-256
- conv3-512
- conv3-512
- conv3-512
- conv3-512
- maxpool
- FC-4096
- FC-4096
- FC-1000
- soft-max

A variation of residual connection: Concatenation (DenseNet)

- Feature maps of all preceding layers are concatenated and used as input for the current layer.
- Facilitate gradient back propagation, as with residual connection.
- Strengthen feature forward propagation and reuse.

Figure 1: A 5-layer dense block with a growth rate of $k = 4$. Each layer takes all preceding feature-maps as input.

Stacking Dense Blocks

Use bottleneck layer (1x1 conv) to reduce the number of feature maps between blocks

- Can use fewer layers to achieve same performance as ResNET

Dilated Convolution

- Large perceptive field is important to incorporate global information
- How to increase the perceptive field
 - Larger filter
 - More layers of small filters
 - Dilated conv.

- Receptive field of the first layer is the filter size
- Receptive field (w.r.t. input image) of a deeper layer depends on all previous layers’ filter size and strides

Figure from Fergus: https://cs.nyu.edu/~fergus/teaching/vision/3_convnets.pdf
Dilated Conv in 1D

Actual Dilated Casual Convolutions

Figure from https://i.stack.imgur.com/RmJSu.png

Multiscale processing while maintaining original resolution!
Used for speech waveform generation.
Figure 1: Systematic dilation supports exponential expansion of the receptive field without loss of resolution or coverage. (a) F_1 is produced from F_0 by a 1-dilated convolution; each element in F_1 has a receptive field of 3×3. (b) F_2 is produced from F_1 by a 2-dilated convolution; each element in F_2 has a receptive field of 7×7. (c) F_3 is produced from F_2 by a 4-dilated convolution; each element in F_3 has a receptive field of 15×15. The number of parameters associated with each layer is identical. The receptive field grows exponentially while the number of parameters grows linearly.

Multiscale processing while maintaining original resolution! Good for dense prediction: image to image
Outline (Part II)

• Neural Nets and Conv Nets and Model Training (Review)
• Gradient calculation
• Some important extensions of conv. layers
• Popular classification models and transfer learning
Well-Known Models

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

- 2010: 28.2 accuracy, Lin et al
- 2011: 25.8 accuracy, Sanchez & Perronnin
- 2012: 16.4 accuracy, Krizhevsky et al (AlexNet)
- 2013: 11.7 accuracy, Zeiler & Fergus
- 2014: 7.3 accuracy, Simonyan & Zisserman (VGG)
- 2014: 6.7 accuracy, Szegedy et al (GoogLeNet)
- 2015: 3.6 accuracy, He et al (ResNet)
- 2016: 3 accuracy, Shao et al
- 2017: 2.3 accuracy, Hu et al (SENet)
- Human: 5.1 accuracy

First CNN-based winner: 2012
19 layers for 2013
22 layers for 2014
152 layers for later years

Performance vs. Complexity

Transfer Learning

- For image classification or other applications, training from scratch takes tremendous resources
- Instead, can refine the VGG or other well trained networks
- Can use VGG convolutional layers, and retrain only the fully connected layers (possibly some later convolutional layers) for different problems.
- Or can use VGG conv layers as the “initial model” and further refine.
- Computer assignment: load VGG model, and fix all conv. layers, retrain additional fully connected layers for binary classification, try and compare different training tricks
 - Using Flickr API (courtesy of Sundeep Rangan) for downloading images for a given keyword
VGG16

- From the Visual Geometry Group
 - Oxford, UK

- Won ImageNet ILSVRC-2014

- Remains a very good network

- Lower layers are often used as feature extraction layers for other tasks

http://www.robots.ox.ac.uk/~vgg/research/very_deep/

K. Simonyan, A. Zisserman

Very Deep Convolutional Networks for Large-Scale Image Recognition

arXiv technical report, 2014
Transfer Learning

Transfer Learning with CNNs

1. Train on Imagenet
- FC-1000
- FC-4096
- FC-4096
- MaxPool
- Conv-512
- Conv-512
- MaxPool
- Conv-256
- Conv-256
- MaxPool
- Conv-128
- Conv-128
- MaxPool
- Conv-64
- Conv-64
- Image

2. Small Dataset (C classes)
- FC-C
- FC-4096
- FC-4096
- MaxPool
- Conv-512
- Conv-512
- MaxPool
- Conv-256
- Conv-256
- MaxPool
- Conv-128
- Conv-128
- MaxPool
- Conv-64
- Conv-64
- Image

3. Bigger dataset
- FC-C
- FC-4096
- FC-4096
- MaxPool
- Conv-512
- Conv-512
- MaxPool
- Conv-256
- Conv-256
- MaxPool
- Conv-128
- Conv-128
- MaxPool
- Conv-64
- Conv-64
- Image

- Reinitialize this and train
- Freeze these
- Train these
- With bigger dataset, train more layers
- Freeze these
- Lower learning rate when finetuning; 1/10 of original LR is good starting point

Takeaway for your projects and beyond:
Have some dataset of interest but it has < ~1M images?

1. Find a very large dataset that has similar data, train a big ConvNet there
2. Transfer learn to your dataset

Deep learning frameworks provide a “Model Zoo” of pretrained models so you don’t need to train your own

Caffe: https://github.com/BVLC/caffe/wiki/Model-Zoo
TensorFlow: https://github.com/tensorflow/models
PyTorch: https://github.com/pytorch/vision

Summary

• Gradient Calculation through backpropagation
 – Tensor gradient, Tensor chain rule
• Residual and dense connections to ease gradient back propagation
• Dilated convolution for increasing perceptive field
• Transfer learning
Recommended Readings

• For tensor gradient calculation and backpropagation:
 – Lecture material of Sundeep Rangan
 – https://github.com/sdrangan/introml/blob/master/sequence.md
 – Unit on neural net and convolution networks

• For vision applications:
 – Popular network case studies:
 – Learning GPU and PyTorch and TensorFlow:
 – Video available for previous offerings:
 • https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv
 • https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv